Suppr超能文献

对转录组学数据的综合生物信息学和人工智能分析确定了与重度抑郁症相关的基因,包括……

Integrative bioinformatics and artificial intelligence analyses of transcriptomics data identified genes associated with major depressive disorders including .

作者信息

Bouzid Amal, Almidani Abdulrahman, Zubrikhina Maria, Kamzanova Altyngul, Ilce Burcu Yener, Zholdassova Manzura, Yusuf Ayesha M, Bhamidimarri Poorna Manasa, AlHaj Hamid A, Kustubayeva Almira, Bernstein Alexander, Burnaev Evgeny, Sharaev Maxim, Hamoudi Rifat

机构信息

Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.

Applied AI Center, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.

出版信息

Neurobiol Stress. 2023 Jul 7;26:100555. doi: 10.1016/j.ynstr.2023.100555. eCollection 2023 Sep.

Abstract

Major depressive disorder (MDD) is a common mental disorder and is amongst the most prevalent psychiatric disorders. MDD remains challenging to diagnose and predict its onset due to its heterogeneous phenotype and complex etiology. Hence, early detection using diagnostic biomarkers is critical for rapid intervention. In this study, a mixture of AI and bioinformatics were used to mine transcriptomic data from publicly available datasets including 170 MDD patients and 121 healthy controls. Bioinformatics analysis using gene set enrichment analysis (GSEA) and machine learning (ML) algorithms were applied. The GSEA revealed that differentially expressed genes in MDD patients are mainly enriched in pathways related to immune response, inflammatory response, neurodegeneration pathways and cerebellar atrophy pathways. Feature selection methods and ML provided predicted models based on MDD-altered genes with ≥75% of accuracy. The integrative analysis between the bioinformatics and ML approaches identified ten key MDD-related biomarkers including and . Among them, , active in synaptic plasticity and neurotransmission, was the most robust and reliable to distinguish between MDD patients and healthy controls amongst independent external datasets consisting of a mixture of populations. Further evaluation using saliva samples from an independent cohort of MDD and healthy individuals confirmed the upregulation of in patients with MDD compared to healthy controls. Functional mapping to the human brain regions showed to have high expression in the main subcortical limbic brain regions implicated in depression. In conclusion, integrative bioinformatics and ML approaches identified putative non-invasive diagnostic MDD-related biomarkers panel for the onset of depression.

摘要

重度抑郁症(MDD)是一种常见的精神障碍,也是最普遍的精神疾病之一。由于其异质性表型和复杂的病因,MDD的诊断和发病预测仍然具有挑战性。因此,使用诊断生物标志物进行早期检测对于快速干预至关重要。在本研究中,人工智能和生物信息学相结合,用于挖掘来自公开可用数据集的转录组数据,其中包括170名MDD患者和121名健康对照。应用了使用基因集富集分析(GSEA)和机器学习(ML)算法的生物信息学分析。GSEA显示,MDD患者中差异表达的基因主要富集在与免疫反应、炎症反应、神经退行性变途径和小脑萎缩途径相关的通路中。特征选择方法和ML基于MDD改变的基因提供了准确率≥75%的预测模型。生物信息学和ML方法之间的综合分析确定了十个与MDD相关的关键生物标志物,包括 和 。其中, 在突触可塑性和神经传递中起作用,在由不同人群组成的独立外部数据集中,是区分MDD患者和健康对照最稳健、最可靠的标志物。使用来自MDD和健康个体独立队列的唾液样本进行的进一步评估证实,与健康对照相比,MDD患者中 上调。在人类大脑区域的功能映射显示, 在与抑郁症相关的主要皮层下边缘脑区中高表达。总之,综合生物信息学和ML方法确定了用于抑郁症发病的推定非侵入性诊断MDD相关生物标志物组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de07/10423927/5f106b7a7af4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验