Suppr超能文献

血红蛋白-金属磷酸盐有机-无机杂化纳米花的可控合成及其在生物催化中的应用。

Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis.

机构信息

College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China.

School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.

出版信息

Inorg Chem. 2023 Aug 28;62(34):13812-13823. doi: 10.1021/acs.inorgchem.3c01539. Epub 2023 Aug 16.

Abstract

In recent years, organic-inorganic hybrid nanoflower technology has become an effective method for enzyme immobilization. Here, seven hierarchical flower-like hemoglobin-phosphate organic-inorganic hybrid nanomaterials (Hb-M(PO)nHO HNFs) were synthesized through an improved universal one-pot wet-chemical method, with Ca, Mn, Fe, Co, Ni, Cu and Zn as inorganic components. In this synthesis process, the metal cations are successively involved in the coordination reaction with Hb and the metathesis reaction to generate phosphate precipitation. The coordination ability of metal cations and the generation rate of phosphate precipitations were evaluated, then the progress of the two chemical reactions was controlled synchronously by adjusting the phosphate buffer (PB) concentration, and finally a flower-like structure conducive to substrate diffusion and transport was obtained. Due to the conformational transformation of hemoglobin and the abundant Cu/Fe active sites, the hemoglobin-Cu(PO)·3HO nanoflowers have extremely high catalytic activity, which is ∼14 times that of Hb. Importantly, this method is suitable for the monometallic-ionic, polymetallic-ionic and polyvalent metal-ion nanoflowers, which broadens the chemical composition and structural diversity of nanoflowers.

摘要

近年来,有机-无机杂化纳米花技术已成为酶固定化的一种有效方法。在这里,通过改进的通用一锅湿化学法,以 Ca、Mn、Fe、Co、Ni、Cu 和 Zn 作为无机成分,合成了七种分级花状血红蛋白-磷酸盐有机-无机杂化纳米材料(Hb-M(PO)nHO HNFs)。在这个合成过程中,金属阳离子依次参与与 Hb 的配位反应和复分解反应生成磷酸盐沉淀。评估了金属阳离子的配位能力和磷酸盐沉淀的生成速率,然后通过调节磷酸盐缓冲液(PB)浓度来同步控制两个化学反应的进程,最终得到有利于底物扩散和传输的花状结构。由于血红蛋白的构象转变和丰富的 Cu/Fe 活性位点,血红蛋白-Cu(PO)·3HO 纳米花具有极高的催化活性,约为 Hb 的 14 倍。重要的是,这种方法适用于单价离子、多价离子和多价金属离子纳米花,拓宽了纳米花的化学成分和结构多样性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验