Cai Siqi, Li Peiwen, Li Haizhou
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):17387-17397. doi: 10.1109/TNNLS.2023.3303308. Epub 2024 Dec 2.
Humans show a remarkable ability in solving the cocktail party problem. Decoding auditory attention from the brain signals is a major step toward the development of bionic ears emulating human capabilities. Electroencephalography (EEG)-based auditory attention detection (AAD) has attracted considerable interest recently. Despite much progress, the performance of traditional AAD decoders remains to be improved, especially in low-latency settings. State-of-the-art AAD decoders based on deep neural networks generally lack the intrinsic temporal coding ability in biological networks. In this study, we first propose a bio-inspired spiking attentional neural network, denoted as BSAnet, for decoding auditory attention. BSAnet is capable of exploiting the temporal dynamics of EEG signals using biologically plausible neurons and an attentional mechanism. Experiments on two publicly available datasets confirm the superior performance of BSAnet over other state-of-the-art systems across various evaluation conditions. Moreover, BSAnet imitates realistic brain-like information processing, through which we show the advantage of brain-inspired computational models.
人类在解决鸡尾酒会问题方面展现出非凡的能力。从大脑信号中解码听觉注意力是朝着开发模拟人类能力的仿生耳迈出的重要一步。基于脑电图(EEG)的听觉注意力检测(AAD)最近引起了相当大的关注。尽管取得了很大进展,但传统AAD解码器的性能仍有待提高,尤其是在低延迟环境中。基于深度神经网络的最先进AAD解码器通常缺乏生物网络中的内在时间编码能力。在本研究中,我们首先提出了一种受生物启发的脉冲注意力神经网络,称为BSAnet,用于解码听觉注意力。BSAnet能够使用具有生物合理性的神经元和注意力机制来利用EEG信号的时间动态。在两个公开可用数据集上进行的实验证实了BSAnet在各种评估条件下优于其他最先进系统的性能。此外,BSAnet模仿了类似大脑的现实信息处理,通过它我们展示了受大脑启发的计算模型的优势。