Suppr超能文献

用于生物医学信号分析的脉冲神经网络。

Spiking neural networks for biomedical signal analysis.

作者信息

Choi Sang Ho

机构信息

School of Computer and Information Engineering, Kwangwoon University, Seoul, 01897 Korea.

出版信息

Biomed Eng Lett. 2024 Jul 5;14(5):955-966. doi: 10.1007/s13534-024-00405-z. eCollection 2024 Sep.

Abstract

Artificial intelligence (AI) has had a significant impact on human life because of its pervasiveness across industries and its rapid development. Although AI has achieved superior performance in learning and reasoning, it encounters challenges such as substantial computational demands, privacy concerns, communication delays, and high energy consumption associated with cloud-based models. These limitations have facilitated a paradigm change in on-device AI processing, which offers enhanced privacy, reduced latency, and improved power efficiency through the direct execution of computations on devices. With advancements in neuromorphic systems, spiking neural networks (SNNs), often referred to as the next generation of AI, are currently in focus as on-device AI. These technologies aim to mimic the human brain efficiency and provide promising real-time processing with minimal energy. This study reviewed the application of SNNs in the analysis of biomedical signals (electroencephalograms, electrocardiograms, and electromyograms), and consequently, investigated the distinctive attributes and prospective future paths of SNNs models in the field of biomedical signal analysis.

摘要

人工智能(AI)因其在各行业的广泛应用及其快速发展,对人类生活产生了重大影响。尽管人工智能在学习和推理方面取得了卓越的性能,但它也面临着诸多挑战,如大量的计算需求、隐私问题、通信延迟以及与基于云的模型相关的高能耗。这些限制推动了设备端人工智能处理的范式转变,通过在设备上直接执行计算,这种处理方式提供了增强的隐私保护、更低的延迟以及更高的功率效率。随着神经形态系统的发展,脉冲神经网络(SNNs),通常被称为下一代人工智能,目前作为设备端人工智能受到关注。这些技术旨在模仿人类大脑的效率,并以最小的能量提供有前景的实时处理。本研究回顾了脉冲神经网络在生物医学信号(脑电图、心电图和肌电图)分析中的应用,因此,研究了脉冲神经网络模型在生物医学信号分析领域的独特属性和未来潜在发展路径。

相似文献

1
Spiking neural networks for biomedical signal analysis.用于生物医学信号分析的脉冲神经网络。
Biomed Eng Lett. 2024 Jul 5;14(5):955-966. doi: 10.1007/s13534-024-00405-z. eCollection 2024 Sep.
9
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

引用本文的文献

本文引用的文献

2
Fractal Spiking Neural Network Scheme for EEG-Based Emotion Recognition.基于 EEG 的情绪识别分形尖峰神经网络方案。
IEEE J Transl Eng Health Med. 2023 Sep 28;12:106-118. doi: 10.1109/JTEHM.2023.3320132. eCollection 2024.
3
EESCN: A novel spiking neural network method for EEG-based emotion recognition.EESCN:一种基于 EEG 的情绪识别新型尖峰神经网络方法。
Comput Methods Programs Biomed. 2024 Jan;243:107927. doi: 10.1016/j.cmpb.2023.107927. Epub 2023 Nov 20.
5
Emotional brain network decoded by biological spiking neural network.由生物脉冲神经网络解码的情感脑网络。
Front Neurosci. 2023 Jul 11;17:1200701. doi: 10.3389/fnins.2023.1200701. eCollection 2023.
10
Application of Machine Learning in Epileptic Seizure Detection.机器学习在癫痫发作检测中的应用。
Diagnostics (Basel). 2022 Nov 21;12(11):2879. doi: 10.3390/diagnostics12112879.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验