Kremer Geoffroy, Mahmoudi Aymen, M'Foukh Adel, Bouaziz Meryem, Rahimi Mehrdad, Della Rocca Maria Luisa, Le Fèvre Patrick, Dayen Jean-Francois, Bertran François, Matzen Sylvia, Pala Marco, Chaste Julien, Oehler Fabrice, Ouerghi Abdelkarim
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France.
Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, 54011 Nancy, France.
ACS Nano. 2023 Oct 10;17(19):18924-18931. doi: 10.1021/acsnano.3c04186. Epub 2023 Aug 16.
Two-dimensional (2D) ferroelectric (FE) materials are promising compounds for next-generation nonvolatile memories due to their low energy consumption and high endurance. Among them, α-InSe has drawn particular attention due to its in- and out-of-plane ferroelectricity, whose robustness has been demonstrated down to the monolayer limit. This is a relatively uncommon behavior since most bulk FE materials lose their ferroelectric character at the 2D limit due to the depolarization field. Using angle resolved photoemission spectroscopy (ARPES), we unveil another unusual 2D phenomenon appearing in 2H α-InSe single crystals, the occurrence of a highly metallic two-dimensional electron gas (2DEG) at the surface of vacuum-cleaved crystals. This 2DEG exhibits two confined states, which correspond to an electron density of approximately 10 electrons/cm, also confirmed by thermoelectric measurements. Combination of ARPES and density functional theory (DFT) calculations reveals a direct band gap of energy equal to 1.3 ± 0.1 eV, with the bottom of the conduction band localized at the center of the Brillouin zone, just below the Fermi level. Such strong n-type doping further supports the quantum confinement of electrons and the formation of the 2DEG.
二维(2D)铁电(FE)材料因其低能耗和高耐久性,是下一代非易失性存储器的理想化合物。其中,α-InSe因其面内和面外铁电性而备受关注,其铁电性的稳健性已在单层极限下得到证实。这是一种相对罕见的行为,因为大多数块状铁电材料由于去极化场在二维极限下会失去其铁电特性。利用角分辨光电子能谱(ARPES),我们揭示了在2H α-InSe单晶中出现的另一种不寻常的二维现象,即在真空解理晶体表面出现高度金属性的二维电子气(2DEG)。这种二维电子气表现出两种受限状态,对应于约10个电子/cm的电子密度,热电测量也证实了这一点。ARPES和密度泛函理论(DFT)计算相结合,揭示了一个能量为1.3±0.1 eV的直接带隙,导带底部位于布里渊区中心,略低于费米能级。这种强n型掺杂进一步支持了电子的量子限制和二维电子气的形成。