Rodrigues-Fontenele Guilherme, Fontenele Gabriel, Valentim Mirela R, Freitas Luisa V C, Rodrigues-Junior Gilberto, Magalhães-Paniago Rogério, Malachias Angelo
Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil.
Institute of Physics, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-859, Brazil.
ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49902-49912. doi: 10.1021/acsami.4c08610. Epub 2024 Sep 6.
The production of controlled doping in two-dimensional semiconductor materials is a challenging issue when introducing these systems into current and future technology. In some compounds, the coexistence of distinct crystallographic phases for a fixed composition introduces an additional degree of complexity for synthesis, chemical stability, and potential applications. In this work, we demonstrate that a multiphase InSe layered semiconductor system, synthesized with three distinct structures─rhombohedral α and β-InSe and trigonal δ-InSe─exhibits chemical stability and well-behaved n-type doping. Scanning tunneling spectroscopy measurements reveal variations in the local electronic density of states among the InSe structures, resulting in a compound system with electronic bandgaps that range from infrared to visible light. These characteristics make the layered InSe system a promising candidate for multigap or broad spectral optical devices, such as detectors and solar cells. The ability to tune the electronic properties of InSe through structural phase manipulation makes it ideal for integration into flexible electronics and the development of heterostructures with other materials.
当将二维半导体材料引入当前及未来技术时,在其中实现可控掺杂是一个具有挑战性的问题。在某些化合物中,对于固定的组成,不同晶体相的共存给合成、化学稳定性及潜在应用带来了额外的复杂程度。在这项工作中,我们证明了一种多相InSe层状半导体系统,它是由三种不同结构——菱面体α-InSe和β-InSe以及三角δ-InSe——合成的,展现出化学稳定性和良好的n型掺杂特性。扫描隧道光谱测量揭示了InSe结构之间局部电子态密度的变化,从而形成了一个电子带隙范围从红外到可见光的复合系统。这些特性使得层状InSe系统成为多带隙或宽光谱光学器件(如探测器和太阳能电池)的一个有前景的候选材料。通过结构相调控来调节InSe电子特性的能力使其非常适合集成到柔性电子器件中,以及与其他材料开发异质结构。