Suppr超能文献

用谷歌趋势衡量足球运动员的受欢迎程度。

Measuring the popularity of football players with Google Trends.

机构信息

Centro de Gestión de la Calidad y del Cambio, Universitat Politècnica de València, Valencia, Spain.

Departmento de Economía y Ciencias Sociales, Universitat Politècnica de València, Valencia, Spain.

出版信息

PLoS One. 2023 Aug 16;18(8):e0289213. doi: 10.1371/journal.pone.0289213. eCollection 2023.

Abstract

Google Trends is a valuable tool for measuring popularity since it collects a large amount of information related to Google searches. However, Google Trends has been underused by sports analysts. This research proposes a novel method to calculate several popularity indicators for predicting players' market value. Google Trends was used to calculate six popularity indicators by requesting information about two football players simultaneously and creating popularity layers to compare players of unequal popularity. In addition, as the main idea is to obtain the popularity indicators of all players on the same scale, a cumulative conversion factor was used to rescale these indicators. The results show that the proposed popularity indicators are essential to predicting a player's market value. In addition, using the proposed popularity indicators decreases the transfer fee prediction error for three different models that are fitted to the data using the multiple linear regression, random forest, and gradient boosting machine methods. The popularity indicator Min, which is a robust reflection of the popularity that represents a player's popularity during the periods when they are less popular, is the most important popularity indicator, with a significant effect on the market value. This research provides practical guidance for developing and incorporating the proposed indicators, which could be applied in sports analytics and in any study in which popularity is relevant.

摘要

谷歌趋势是一种衡量人气的有用工具,因为它收集了大量与谷歌搜索相关的信息。然而,体育分析师对谷歌趋势的使用还不够。本研究提出了一种新的方法,通过同时请求有关两名足球运动员的信息来计算几个流行指标,以预测球员的市场价值。利用谷歌趋势计算了六个流行指标,通过同时请求有关两名足球运动员的信息,并创建流行层来比较不同流行度的球员。此外,由于主要思想是在同一尺度上获得所有球员的流行指标,因此使用累积转换因子对这些指标进行重新缩放。结果表明,所提出的流行指标对于预测球员的市场价值至关重要。此外,使用所提出的流行指标可以降低三种不同模型的转会费预测误差,这些模型使用多元线性回归、随机森林和梯度提升机方法拟合数据。流行指标 Min 是最有用的流行指标,它是对球员在不太受欢迎时期的受欢迎程度的稳健反映,对市场价值有显著影响。本研究为开发和纳入所提出的指标提供了实际指导,这些指标可应用于体育分析以及任何与流行度相关的研究中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验