Suppr超能文献

用于工业机器人的无刷直流电机的选择/控制并发优化。

Selection/control concurrent optimization of BLDC motors for industrial robots.

机构信息

Academia de Ingeniería en Robótica, Universidad Politécnica de Atlacomulco, Atlacomulco, Estado de México, México.

Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Atizapán de Zaragoza, Estado de México, México.

出版信息

PLoS One. 2023 Aug 16;18(8):e0289717. doi: 10.1371/journal.pone.0289717. eCollection 2023.

Abstract

This paper aims to concurrently select and control off-the-shelf BLDC motors of industrial robots by using a synergistic model-based approach. The BLDC motors are considered with trapezoidal back-emf, where the three-phase (a,b,c) dynamics of motors are modeled in a mechatronic powertrain model of the robot for the selection and control problem, defining it as a multi-objective dynamic optimization problem with static and dynamic constraints. Since the mechanical and electrical actuators' parameters modify the robot's performance, the selection process considers the actuators' parameters, their control input, operational limits, and the mechanical output to the transmission of the robot joints. Then, three objective functions are to be minimized, the motor's energy consumption, the tracking error, and the total weight of installed motors on the robot mechanism. The control parameterization approach via a cascade controller with PI controllers for actuators' voltage and a PID controller for actuators' torque is used to solve the multi-objective dynamic optimization problem. Based on simulations of the closed-loop system, a Pareto front is obtained to examine trade-offs among the objective functions before implementing any actuators in the existing robotic system. The proposed method is tested on an experimental platform to verify its effectiveness. The performance of an industrial robot with the actuators originally installed is compared with the results obtained by the synergic approach. The results of this comparison show that 10.85% of electrical power can be saved, and the trajectory tracking error improved up to 57.41% using the proposed methodology.

摘要

本文旨在通过协同建模方法同时选择和控制工业机器人的现成无刷直流(BLDC)电机。所考虑的 BLDC 电机具有梯形反电动势,其中电机的三相(a、b、c)动态在机器人的机电动力传动系统模型中建模,用于选择和控制问题,将其定义为具有静态和动态约束的多目标动态优化问题。由于机械和电气执行器的参数会修改机器人的性能,因此选择过程会考虑执行器的参数、它们的控制输入、操作限制以及机械输出到机器人关节的传动。然后,需要最小化三个目标函数,即电机的能耗、跟踪误差和安装在机器人机构上的电机的总重量。通过带有 PI 控制器的级联控制器对执行器的电压和带有 PID 控制器的执行器的转矩进行控制参数化的方法用于解决多目标动态优化问题。基于闭环系统的仿真,获得了 Pareto 前沿,以便在现有机器人系统中实施任何执行器之前,检查目标函数之间的权衡。该方法在实验平台上进行了测试,以验证其有效性。将带有原始安装的执行器的工业机器人的性能与协同方法的结果进行了比较。该比较的结果表明,使用所提出的方法可以节省 10.85%的电力,并且轨迹跟踪误差可以提高 57.41%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f4b/10431662/bf72b607b93c/pone.0289717.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验