Suppr超能文献

基于机器学习算法的直立式防波堤越浪模拟增强。

Enhanced wave overtopping simulation at vertical breakwaters using machine learning algorithms.

机构信息

UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Dublin, Ireland.

UCD Earth Institute, University College Dublin, Dublin, Ireland.

出版信息

PLoS One. 2023 Aug 16;18(8):e0289318. doi: 10.1371/journal.pone.0289318. eCollection 2023.

Abstract

Accurate prediction of wave overtopping at sea defences remains central to the protection of lives, livelihoods, and infrastructural assets in coastal zones. In addressing the increased risks of rising sea levels and more frequent storm surges, robust assessment and prediction methods for overtopping prediction are increasingly important. Methods for predicting overtopping have typically relied on empirical relations based on physical modelling and numerical simulation data. In recent years, with advances in computational efficiency, data-driven techniques including advanced Machine Learning (ML) methods have become more readily applicable. However, the methodological appropriateness and performance evaluation of ML techniques for predicting wave overtopping at vertical seawalls has not been extensively studied. This study examines the predictive performance of four ML techniques, namely Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Support Vector Machines-Regression (SVR), and Artificial Neural Network (ANN) for overtopping discharge at vertical seawalls. The ML models are developed using data from the EurOtop (2018) database. Hyperparameter tuning is performed to curtail algorithms to the intrinsic features of the dataset. Feature Transformation and advanced Feature Selection methods are adopted to reduce data redundancy and overfitting. Comprehensive statistical analysis shows superior performance of the RF method, followed in turn by the GBDT, SVR, and ANN models, respectively. In addition to this, Decision Tree (DT) based methods such as GBDT and RF are shown to be more computationally efficient than SVR and ANN, with GBDT performing simulations more rapidly that other methods. This study shows that ML approaches can be adopted as a reliable and computationally effective method for evaluating wave overtopping at vertical seawalls across a wide range of hydrodynamic and structural conditions.

摘要

准确预测海堤上的波浪越浪仍然是保护沿海地区生命、生计和基础设施资产的核心。在应对海平面上升和风暴潮频发带来的风险增加的过程中,对越浪预测进行稳健评估和预测的方法变得越来越重要。预测越浪的方法通常依赖于基于物理模型和数值模拟数据的经验关系。近年来,随着计算效率的提高,包括先进的机器学习 (ML) 方法在内的数据驱动技术变得更加适用。然而,对于 ML 技术在垂直海堤上预测波浪越浪的方法适宜性和性能评估尚未得到广泛研究。本研究考察了四种 ML 技术,即随机森林 (RF)、梯度提升决策树 (GBDT)、支持向量机回归 (SVR) 和人工神经网络 (ANN),在预测垂直海堤上的越浪流量方面的预测性能。使用 EurOtop(2018)数据库中的数据开发了 ML 模型。通过进行超参数调整,将算法限制在数据集的固有特征内。采用特征变换和高级特征选择方法来减少数据冗余和过拟合。综合统计分析表明,RF 方法的性能最优,其次是 GBDT、SVR 和 ANN 模型。此外,还表明基于决策树(DT)的方法,如 GBDT 和 RF,比 SVR 和 ANN 更具计算效率,其中 GBDT 的模拟速度比其他方法更快。本研究表明,ML 方法可以作为一种可靠且计算有效的方法,用于评估各种水动力和结构条件下垂直海堤上的波浪越浪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2814/10431617/3daf7f20dac6/pone.0289318.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验