Suppr超能文献

阿佳娜:简约机器人最小感知的广义深度不确定性。

Ajna: Generalized deep uncertainty for minimal perception on parsimonious robots.

作者信息

Sanket Nitin J, Singh Chahat Deep, Fermüller Cornelia, Aloimonos Yiannis

机构信息

Perception and Robotics Group (PRG), University of Maryland, College Park, MD, USA.

Perception and Autonomous Robotics (PeAR) Group, Worcester Polytechnic Institute, Worcester, MA, USA.

出版信息

Sci Robot. 2023 Aug 16;8(81):eadd5139. doi: 10.1126/scirobotics.add5139.

Abstract

Robots are active agents that operate in dynamic scenarios with noisy sensors. Predictions based on these noisy sensor measurements often lead to errors and can be unreliable. To this end, roboticists have used fusion methods using multiple observations. Lately, neural networks have dominated the accuracy charts for perception-driven predictions for robotic decision-making and often lack uncertainty metrics associated with the predictions. Here, we present a mathematical formulation to obtain the heteroscedastic aleatoric uncertainty of any arbitrary distribution without prior knowledge about the data. The approach has no prior assumptions about the prediction labels and is agnostic to network architecture. Furthermore, our class of networks, Ajna, adds minimal computation and requires only a small change to the loss function while training neural networks to obtain uncertainty of predictions, enabling real-time operation even on resource-constrained robots. In addition, we study the informational cues present in the uncertainties of predicted values and their utility in the unification of common robotics problems. In particular, we present an approach to dodge dynamic obstacles, navigate through a cluttered scene, fly through unknown gaps, and segment an object pile, without computing depth but rather using the uncertainties of optical flow obtained from a monocular camera with onboard sensing and computation. We successfully evaluate and demonstrate the proposed Ajna network on four aforementioned common robotics and computer vision tasks and show comparable results to methods directly using depth. Our work demonstrates a generalized deep uncertainty method and demonstrates its utilization in robotics applications.

摘要

机器人是在具有噪声传感器的动态场景中运行的主动智能体。基于这些有噪声的传感器测量进行的预测往往会导致误差,并且可能不可靠。为此,机器人专家使用了基于多个观测值的融合方法。最近,神经网络在用于机器人决策的感知驱动预测的准确性排行榜上占据主导地位,但往往缺乏与预测相关的不确定性指标。在此,我们提出一种数学公式,用于在无需关于数据的先验知识的情况下获得任意分布的异方差随机不确定性。该方法对预测标签没有先验假设,并且与网络架构无关。此外,我们的网络类别Ajna增加的计算量极小,在训练神经网络以获得预测的不确定性时,只需要对损失函数进行微小更改,即使在资源受限的机器人上也能实现实时操作。此外,我们研究了预测值不确定性中存在的信息线索及其在统一常见机器人问题中的效用。特别是,我们提出了一种方法,无需计算深度,而是利用从具有机载传感和计算功能的单目相机获得的光流不确定性,来躲避动态障碍物、在杂乱场景中导航、飞过未知间隙以及分割物体堆。我们成功地在上述四个常见的机器人和计算机视觉任务上评估并展示了所提出的Ajna网络,并展示了与直接使用深度的方法相当的结果。我们的工作展示了一种广义的深度不确定性方法,并展示了其在机器人应用中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验