Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
Biophys Chem. 2023 Oct;301:107092. doi: 10.1016/j.bpc.2023.107092. Epub 2023 Aug 8.
The catalytic activity of cytochrome P450 2B4 (CYP2B4) is moderated by its cognate redox partner cytochrome b5 (Cyt-b). The endoplasmic reticulum (ER) membrane and intermolecular transmembrane (TM) interaction between CYP2B4 and Cyt-b regulate the substrate catalysis and the reaction rate. This emphasizes the significance of elucidating the molecular basis of CYP2B4 and Cyt-b complexation in a membrane environment to better understand the enzymatic activity of CYP2B4. Our previous solid-state NMR studies revealed the membrane topology of the transmembrane domains of these proteins in the free and complex forms. Here, we show the cross-angle complex formation by the single-pass TM domains of CYP2B4 and Cyt-b, which is mainly driven by several salt-bridges (E2-R128, R21-D104 and K25-D104), using a multi-microsecond molecular dynamic simulation. Additionally, the leucine-zipper residues (L8, L12, L15, L18 and L19 from CYP2B4) and π-stacking between H23 and F20 residues of CYP2B4 and W110 of Cyt-b are identified to stabilize the TM-TM complex in the ER membrane. The simulated tilts of the helices in the free and in the complex are in excellent agreement with solid-state NMR results. The TM-TM packing influences a higher order structural stability when compared to the complex formed by the truncated soluble domains of these two proteins. MM/PBSA based binding free energy estimates nearly 100-fold higher binding affinity (ΔG = -2810.68 ± 696.44 kJ/mol) between the soluble domains of the full-length CYP2B4 and Cyt-b when embedded in lipid membrane as compared to the TM-domain-truncated soluble domains (ΔG = -27.406 ± 10.32 kJ/mol). The high-resolution full-length CYP2B4-Cyt-b complex structure and its dynamics in a native ER membrane environment reported here could aid in the development of approaches to effectively modulate the drug-metabolism activity of CYP2B4.
细胞色素 P450 2B4(CYP2B4)的催化活性受其同源还原伴侣细胞色素 b5(Cyt-b)调节。内质网(ER)膜和 CYP2B4 与 Cyt-b 之间的分子间跨膜(TM)相互作用调节底物催化和反应速率。这强调了阐明 CYP2B4 和 Cyt-b 复合物在膜环境中的分子基础以更好地理解 CYP2B4 的酶活性的重要性。我们之前的固态 NMR 研究揭示了这些蛋白质在游离和复合物形式下的跨膜结构域的膜拓扑结构。在这里,我们展示了 CYP2B4 和 Cyt-b 的单通 TM 结构域之间的交叉角复合物形成,这主要是由几个盐桥(E2-R128、R21-D104 和 K25-D104)驱动的,使用了多微秒分子动力学模拟。此外,还鉴定了 CYP2B4 的亮氨酸拉链残基(L8、L12、L15、L18 和 L19)和 CYP2B4 的 H23 和 F20 残基与 Cyt-b 的 W110 之间的π堆积,以稳定 ER 膜中的 TM-TM 复合物。自由和复合物中螺旋的模拟倾斜与固态 NMR 结果非常吻合。与这两种蛋白质的截短可溶性结构域形成的复合物相比,TM-TM 包装对更高阶结构稳定性的影响更大。基于 MM/PBSA 的结合自由能估计表明,与截短的可溶性结构域形成的复合物相比,当完全长度的 CYP2B4 和 Cyt-b 嵌入脂质膜中时,它们之间的结合亲和力(ΔG=-2810.68±696.44kJ/mol)高 100 倍。本文报道的在天然 ER 膜环境中的高分辨率全长 CYP2B4-Cyt-b 复合物结构及其动力学可能有助于开发有效调节 CYP2B4 药物代谢活性的方法。