National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.
Department of Chemical and Biomedical Engineering, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32310, United States.
J Phys Chem B. 2024 Apr 18;128(15):3527-3537. doi: 10.1021/acs.jpcb.4c01016. Epub 2024 Apr 3.
Despite the limitations posed by poor sensitivity, studies have reported the unique advantages of O based NMR spectroscopy to study systems existing in liquid, solid, or semisolid states. O NMR studies have exploited the remarkable sensitivity of quadrupole coupling and chemical shift anisotropy tensors to the local environment in the characterization of a variety of intra- and intermolecular interactions and motion. Recent studies have considerably expanded the use of O NMR to study dynamic intermolecular interactions associated with some of the challenging biological systems under magic angle spinning (MAS) and aligned conditions. The very fast relaxing nature of O has been well utilized in cellular and in vivo MRS (magnetic resonance spectroscopy) and MRI (magnetic resonance imaging) applications. The main focus of this Review is to highlight the new developments in the biological solids with a detailed discussion for a few selected examples including membrane proteins and nanodiscs. In addition to the unique benefits and limitations, the remaining challenges to overcome, and the impacts of higher magnetic fields and sensitivity enhancement techniques are discussed.
尽管灵敏度较差带来了限制,但研究报告指出 O 基于 NMR 光谱学在研究存在于液体、固体或半固体状态的系统方面具有独特的优势。O NMR 研究利用了四极耦合和化学位移各向异性张量对局部环境的显著敏感性,用于表征各种分子内和分子间相互作用和运动。最近的研究极大地扩展了 O NMR 的应用范围,以研究与一些在魔法角旋转(MAS)和定向条件下具有挑战性的生物系统相关的动态分子间相互作用。O 的快速弛豫特性在细胞和体内 MRS(磁共振波谱学)和 MRI(磁共振成像)应用中得到了很好的利用。这篇综述的主要重点是突出生物固体的新发展,并详细讨论了包括膜蛋白和纳米盘在内的几个选定示例。除了独特的优势和限制外,还讨论了需要克服的剩余挑战,以及更高磁场和灵敏度增强技术的影响。