From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
Neurology. 2023 Oct 3;101(14):e1434-e1447. doi: 10.1212/WNL.0000000000207725. Epub 2023 Aug 16.
This study aimed to identify CSF proteomic signatures characteristic of Parkinson disease (PD) and evaluate their clinical utility.
This observational study used data from the Parkinson's Progression Markers Initiative (PPMI), which enrolled patients with PD, healthy controls (HCs), and non-PD participants carrying , , and/or pathogenic variants (genetic prodromals) at international sites. Study participants were chosen from PPMI enrollees based on the availability of aptamer-based CSF proteomic data, quantifying 4,071 proteins, and classified as patients with PD without , , and/or pathogenic variants (nongenetic PD), HCs, patients with PD carrying the aforementioned pathogenic variants (genetic PD), or genetic prodromals. Differentially expressed protein (DEP) analysis and the least absolute shrinkage and selection operator (LASSO) were applied to the data from nongenetic PD and HCs. Signatures characteristics of nongenetic PD were quantified as a PD proteomic score (PD-ProS), validated internally and then externally using data of 1,556 CSF proteins from the Cohort Consortium (LCC). We further tested the PD-ProS in genetic PD and genetic prodromals and examined associations with clinical progression.
Data from 279 patients with nongenetic PD (mean ± SD, age 62.0 ± 9.6 years; male 67.7%) and 141 HCs (age 60.5 ± 11.9 years; male 64.5%) were used for PD-ProS derivation. From 23 DEPs, LASSO determined weights of 14 DEPs for the PD-ProS (area under the curve [AUC] 0.83, 95% CI 0.78-0.87), validated in an independent internal validation cohort of 71 patients with nongenetic PD and 35 HCs (AUC 0.81, 95% CI 0.73-0.90). In the LCC, only 5 of the 14 DEPs were also measured. Notably, these 5 DEPs still distinguished 34 patients with nongenetic PD from 31 HCs with the same weights (AUC 0.75, 95% CI 0.63-0.87). Furthermore, the PD-ProS distinguished 258 patients with genetic PD from 365 genetic prodromals. Finally, regardless of genetic status, the PD-ProS independently predicted both cognitive and motor decline in PD (dementia, adjusted hazard ratio in the highest quintile [aHR-Q5] 2.8 [95% CI 1.6-5.0]; Hoehn and Yahr stage IV, aHR-Q5 2.1 [95% CI 1.1-4.0]).
By integrating high-throughput proteomics with machine learning, we identified PD-associated CSF proteomic signatures crucial for PD development and progression.
ClinicalTrials.gov (NCT01176565). A link to the trial registry page is clinicaltrials.gov/ct2/show/NCT01141023.
This study provides Class II evidence that the CSF proteome contains clinically important information regarding the development and progression of Parkinson disease that can be deciphered by a combination of high-throughput proteomics and machine learning.
本研究旨在鉴定出帕金森病(PD)特征性的 CSF 蛋白质组学特征,并评估其临床效用。
本观察性研究使用了帕金森病进展标志物倡议(PPMI)的数据,该研究在国际多个地点招募了 PD 患者、健康对照者(HCs)和携带 、 、 和/或 致病性变异(遗传前驱者)的非 PD 参与者。研究参与者是根据基于适配体的 CSF 蛋白质组学数据的可用性从 PPMI 登记者中选择的,该数据定量分析了 4071 种蛋白质,并分为无 、 、 和/或 致病性变异的 PD 患者(非遗传 PD)、HCs、携带上述致病性变异的 PD 患者(遗传 PD)或遗传前驱者。对非遗传 PD 和 HCs 的数据进行差异表达蛋白(DEP)分析和最小绝对收缩和选择算子(LASSO)分析。非遗传 PD 的特征性蛋白质组学特征被量化为 PD 蛋白质组评分(PD-ProS),并通过来自 1556 种 CSF 蛋白质的 1,556 个 Cohort Consortium(LCC)数据进行内部和外部验证。我们进一步在遗传 PD 和遗传前驱者中测试了 PD-ProS,并检查了与临床进展的关联。
用于 PD-ProS 推导的数据来自 279 名无遗传 PD 患者(平均 ± 标准差,年龄 62.0 ± 9.6 岁;男性 67.7%)和 141 名 HCs(年龄 60.5 ± 11.9 岁;男性 64.5%)。从 23 个 DEP 中,LASSO 确定了用于 PD-ProS 的 14 个 DEP 的权重(曲线下面积 [AUC] 0.83,95%置信区间 [CI] 0.78-0.87),在 71 名无遗传 PD 患者和 35 名 HCs 的独立内部验证队列中得到验证(AUC 0.81,95%CI 0.73-0.90)。在 LCC 中,只有 14 个 DEP 中的 5 个也被测量到。值得注意的是,这些 5 个 DEP 仍然可以将 34 名无遗传 PD 患者与 31 名具有相同权重的 HCs 区分开来(AUC 0.75,95%CI 0.63-0.87)。此外,PD-ProS 还可以将 258 名遗传 PD 患者与 365 名遗传前驱者区分开来。最后,无论遗传状态如何,PD-ProS 都可以独立预测 PD 患者的认知和运动能力下降(痴呆,最高五分位数 [aHR-Q5] 2.8 [95%CI 1.6-5.0];Hoehn 和 Yahr 分期 IV,aHR-Q5 2.1 [95%CI 1.1-4.0])。
通过将高通量蛋白质组学与机器学习相结合,我们鉴定出了与 PD 发展和进展相关的 CSF 蛋白质组学特征,这些特征对 PD 的发展和进展至关重要。
ClinicalTrials.gov(NCT01176565)。试验注册页面的链接为 clinicaltrials.gov/ct2/show/NCT01141023。
本研究提供了 II 级证据,表明 CSF 蛋白质组包含了与帕金森病发展和进展相关的重要临床信息,可以通过高通量蛋白质组学和机器学习的组合来破译。