Suppr超能文献

利用帕金森病标志物倡议(PPMI)队列的MRI和基因数据识别帕金森病:一种改进的机器学习融合方法。

Identification of Parkinson's disease using MRI and genetic data from the PPMI cohort: an improved machine learning fusion approach.

作者信息

Yang Yifeng, Hu Liangyun, Chen Yang, Gu Weidong, Lin Guangwu, Xie YuanZhong, Nie Shengdong

机构信息

Department of Medical Imaging, Huadong Hospital, Fudan University, Shanghai, China.

Center for Functional Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Aging Neurosci. 2025 Feb 4;17:1510192. doi: 10.3389/fnagi.2025.1510192. eCollection 2025.

Abstract

OBJECTIVE

This study aim to leverage advanced machine learning techniques to develop and validate novel MRI imaging features and single nucleotide polymorphism (SNP) gene data fusion methodologies to enhance the early identification and diagnosis of Parkinson's disease (PD).

METHODS

We leveraged a comprehensive dataset from the Parkinson's Progression Markers Initiative (PPMI), which includes high-resolution neuroimaging data, genetic single-nucleotide polymorphism (SNP) profiles, and detailed clinical information from individuals with early-stage PD and healthy controls. Two multi-modal fusion strategies were used: feature-level fusion, where we employed a hybrid feature selection algorithm combining Fisher discriminant analysis, an ensemble Lasso (EnLasso) method, and partial least squares (PLS) regression to identify and integrate the most informative features from neuroimaging and genetic data; and decision-level fusion, where we developed an adaptive ensemble stacking (AE_Stacking) model to synergistically integrate the predictions from multiple base classifiers trained on individual modalities.

RESULTS

The AE_Stacking model achieving the highest average balanced accuracy of 95.36% and an area under the receiver operating characteristic curve (AUC) of 0.974, significantly outperforming feature-level fusion and single-modal models ( < 0.05). Furthermore, by analyzing the features selected across multiple iterations of our models, we identified stable brain region features [lh 6r (FD) and rh 46 (GI)] and key genetic markers (rs356181 and rs2736990 SNPs within the SNCA gene region; rs213202 SNP within the VPS52 gene region), highlighting their potential as reliable early diagnostic indicators for the disease.

CONCLUSION

The AE_Stacking model, trained on MRI and genetic data, demonstrates potential in distinguishing individuals with PD. Our findings enhance understanding of the disease and advance us toward the goal of precision medicine for neurodegenerative disorder.

摘要

目的

本研究旨在利用先进的机器学习技术,开发并验证新型磁共振成像(MRI)特征和单核苷酸多态性(SNP)基因数据融合方法,以加强帕金森病(PD)的早期识别与诊断。

方法

我们利用了来自帕金森病进展标志物计划(PPMI)的综合数据集,其中包括高分辨率神经影像数据、基因单核苷酸多态性(SNP)图谱,以及早期PD患者和健康对照者的详细临床信息。使用了两种多模态融合策略:特征级融合,即采用一种混合特征选择算法,该算法结合了Fisher判别分析、集成套索(EnLasso)方法和偏最小二乘(PLS)回归,以识别并整合神经影像和基因数据中最具信息性的特征;以及决策级融合,即开发一种自适应集成堆叠(AE_Stacking)模型,以协同整合在各个模态上训练的多个基础分类器的预测结果。

结果

AE_Stacking模型实现了最高平均平衡准确率95.36%,以及受试者工作特征曲线(AUC)下面积为0.974,显著优于特征级融合和单模态模型(<0.05)。此外,通过分析我们模型多次迭代中选择的特征,我们确定了稳定的脑区特征[左侧6区(FD)和右侧46区(GI)]以及关键基因标记(SNCA基因区域内的rs356181和rs2736990 SNP;VPS52基因区域内的rs213202 SNP),突出了它们作为该疾病可靠早期诊断指标的潜力。

结论

基于MRI和基因数据训练的AE_Stacking模型在区分PD个体方面显示出潜力。我们的研究结果增进了对该疾病的理解,并推动我们朝着神经退行性疾病精准医学的目标迈进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/178b/11832485/2c2f420e6bdd/fnagi-17-1510192-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验