Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
Nature. 2023 Aug;620(7975):863-872. doi: 10.1038/s41586-023-06424-7. Epub 2023 Aug 16.
Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.
当细胞被重编程为人类诱导多能干细胞 (hiPS 细胞) 时,其表观基因组会发生重大重配置。然而,hiPS 细胞和人类胚胎干细胞 (hES 细胞) 的表观基因组有显著差异,这会影响 hiPS 细胞的功能。这些差异包括在重编程过程中出现的表观遗传记忆和异常,其机制尚不清楚。在这里,我们通过对人类体细胞进行初始重编程和初始重编程到 hiPS 细胞的全基因组 DNA 甲基化谱分析,来描述这些表观遗传差异的持久性和出现。我们发现,重编程诱导的表观遗传异常在初始重编程的中途出现,而 DNA 去甲基化在初始重编程的早期开始。利用这一知识,我们开发了一种瞬时初始处理 (TNT) 重编程策略,模拟胚胎的表观遗传重置。我们表明,hiPS 细胞中的表观遗传记忆集中在由 H3K9me3、核纤层蛋白 B1 和异常 CpH 甲基化标记的与细胞起源相关的抑制性染色质中。TNT 重编程将这些结构域重新配置为类似于 hES 细胞的状态,并且不会破坏基因组印迹。使用同基因系统,我们证明 TNT 重编程可以纠正传统 hiPS 细胞中看到的转座元件过表达和差异基因表达,并且 TNT 重编程的 hiPS 和 hES 细胞显示出相似的分化效率。此外,TNT 重编程增强了来自多种细胞类型的 hiPS 细胞的分化。因此,TNT 重编程纠正了表观遗传记忆和异常,产生的 hiPS 细胞在分子和功能上比传统 hiPS 细胞更类似于 hES 细胞。我们预计 TNT 重编程将成为生物医学和治疗应用的新标准,并为研究表观遗传记忆提供一个新系统。