Suppr超能文献

人工智能在痴呆症药物发现和临床试验优化中的应用。

Artificial intelligence for dementia drug discovery and trials optimization.

机构信息

Eisai Europe Ltd, Hatfield, UK.

University of Westminster, London, UK.

出版信息

Alzheimers Dement. 2023 Dec;19(12):5922-5933. doi: 10.1002/alz.13428. Epub 2023 Aug 16.

Abstract

Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation.

摘要

药物研发和痴呆症临床试验设计历来具有挑战性。部分挑战源于患者异质性、疾病病程长短以及大脑靶标的可及性。应用大数据分析和机器学习工具进行药物研发,并利用这些工具为成功的临床试验设计提供信息,有可能加速进展。在治疗管道的多个阶段都存在机会,而且大量医疗数据集的日益普及为大数据分析提供了可能性,使其能够回答临床和治疗挑战中的关键问题。然而,在实现这一目标之前,需要克服几个挑战,只有多学科方法才能充分发挥数据驱动决策的潜力。本文综述了机器学习在临床试验设计和药物研发中的应用现状,同时提出了克服实施障碍的机会和建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验