Suppr超能文献

一种基于血液检测的集成诊断方法的新型自闭症谱系障碍(DASD)诊断策略。

A new diagnostic autism spectrum disorder (DASD) strategy using ensemble diagnosis methodology based on blood tests.

作者信息

Rabie Asmaa H, Saleh Ahmed I

机构信息

ComputerEngineering and Systems Dept., Faculty of Engineering, Mansoura University, Mansoura, Egypt.

出版信息

Health Inf Sci Syst. 2023 Aug 14;11(1):36. doi: 10.1007/s13755-023-00234-x. eCollection 2023 Dec.

Abstract

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disease that impacts a child's way of behavior and social communication. In early childhood, children with ASD typically exhibit symptoms such as difficulty in social interaction, limited interests, and repetitive behavior. Although there are symptoms of ASD disease, most people do not understand these symptoms and therefore do not have enough knowledge to determine whether or not a child has ASD. Thus, early detection of ASD children based on accurate diagnosis model based on Artificial Intelligence (AI) techniques is a critical process to reduce the spread of the disease and control it early. Through this paper, a new Diagnostic Autism Spectrum Disorder (DASD) strategy is presented to quickly and accurately detect ASD children. DASD contains two layers called Data Filter Layer (DFL) and Diagnostic Layer (DL). Feature selection and outlier rejection processes are performed in DFL to filter the ASD dataset from less important features and incorrect data before using the diagnostic or detection method in DL to accurately diagnose the patients. In DFL, Binary Gray Wolf Optimization (BGWO) technique is used to select the most significant set of features while Binary Genetic Algorithm (BGA) technique is used to eliminate invalid training data. Then, Ensemble Diagnosis Methodology (EDM) as a new diagnostic technique is used in DL to quickly and precisely diagnose ASD children. In this paper, the main contribution is EDM that consists of several diagnostic models including Enhanced K-Nearest Neighbors (EKNN) as one of them. EKNN represents a hybrid technique consisting of three methods called K-Nearest Neighbors (KNN), Naïve Bayes (NB), and Chimp Optimization Algorithm (COA). NB is used as a weighed method to convert data from feature space to weight space. Then, COA is used as a data generation method to reduce the size of training dataset. Finally, KNN is applied on the reduced data in weight space to quickly and accurately diagnose ASD children based on new training dataset with small size. ASD blood tests dataset is used to test the proposed DASD strategy against other recent strategies [1]. It is concluded that the DASD strategy is superior to other strategies based on many performance measures including accuracy, error, recall, precision, micro_average precision, macro_average precision, micro_average recall, macro_average recall, F1-measure, and implementation-time with values equal to 0.93, 0.07, 0.83, 0.82, 0.80, 0.83, 0.79, 0.81, 0.79, and 1.5 s respectively.

摘要

自闭症谱系障碍(ASD)是一种复杂的神经发育疾病,会影响儿童的行为方式和社交沟通能力。在幼儿期,患有ASD的儿童通常会表现出社交互动困难、兴趣有限和重复行为等症状。尽管存在ASD疾病的症状,但大多数人并不了解这些症状,因此没有足够的知识来判断一个孩子是否患有ASD。因此,基于人工智能(AI)技术的准确诊断模型对ASD儿童进行早期检测是减少疾病传播并尽早控制疾病的关键过程。通过本文,提出了一种新的自闭症谱系障碍诊断(DASD)策略,以快速准确地检测ASD儿童。DASD包含两层,称为数据过滤层(DFL)和诊断层(DL)。在DFL中执行特征选择和异常值剔除过程,以从不太重要的特征和错误数据中过滤ASD数据集,然后在DL中使用诊断或检测方法准确诊断患者。在DFL中,使用二进制灰狼优化(BGWO)技术选择最重要的特征集,而使用二进制遗传算法(BGA)技术消除无效训练数据。然后,在DL中使用集成诊断方法(EDM)作为一种新的诊断技术,以快速精确地诊断ASD儿童。在本文中,主要贡献是EDM,它由几个诊断模型组成,其中包括增强型K近邻(EKNN)。EKNN代表一种混合技术,由三种方法组成,即K近邻(KNN)、朴素贝叶斯(NB)和黑猩猩优化算法(COA)。NB用作加权方法,将数据从特征空间转换到权重空间。然后,COA用作数据生成方法,以减小训练数据集的大小。最后,将KNN应用于权重空间中减少的数据,以基于小尺寸的新训练数据集快速准确地诊断ASD儿童。使用ASD血液测试数据集针对其他最新策略测试所提出的DASD策略[1]。得出的结论是,基于包括准确率、误差、召回率、精确率、微平均精确率、宏平均精确率、微平均召回率、宏平均召回率、F1值和实现时间等许多性能指标,DASD策略优于其他策略,其值分别为0.93、0.07、0.83、0.82、0.80、0.83、0.79、0.81、0.79和1.5秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab33/10425316/afc0dcdac706/13755_2023_234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验