Suppr超能文献

基于条件生成对抗网络的生物组织虚拟荧光翻译

Virtual Fluorescence Translation for Biological Tissue by Conditional Generative Adversarial Network.

作者信息

Liu Xin, Li Boyi, Liu Chengcheng, Ta Dean

机构信息

Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China.

State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200433 China.

出版信息

Phenomics. 2023 Mar 2;3(4):408-420. doi: 10.1007/s43657-023-00094-1. eCollection 2023 Aug.

Abstract

UNLABELLED

Fluorescence labeling and imaging provide an opportunity to observe the structure of biological tissues, playing a crucial role in the field of histopathology. However, when labeling and imaging biological tissues, there are still some challenges, e.g., time-consuming tissue preparation steps, expensive reagents, and signal bias due to photobleaching. To overcome these limitations, we present a deep-learning-based method for fluorescence translation of tissue sections, which is achieved by conditional generative adversarial network (cGAN). Experimental results from mouse kidney tissues demonstrate that the proposed method can predict the other types of fluorescence images from one raw fluorescence image, and implement the virtual multi-label fluorescent staining by merging the generated different fluorescence images as well. Moreover, this proposed method can also effectively reduce the time-consuming and laborious preparation in imaging processes, and further saves the cost and time.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43657-023-00094-1.

摘要

未标注

荧光标记和成像为观察生物组织的结构提供了机会,在组织病理学领域发挥着至关重要的作用。然而,在对生物组织进行标记和成像时,仍然存在一些挑战,例如耗时的组织制备步骤、昂贵的试剂以及光漂白导致的信号偏差。为了克服这些限制,我们提出了一种基于深度学习的组织切片荧光转换方法,该方法通过条件生成对抗网络(cGAN)实现。来自小鼠肾脏组织的实验结果表明,所提出的方法可以从一张原始荧光图像预测出其他类型的荧光图像,并且通过合并生成的不同荧光图像也能够实现虚拟多标记荧光染色。此外,所提出的方法还可以有效减少成像过程中耗时费力的准备工作,进一步节省成本和时间。

补充信息

在线版本包含可在10.1007/s43657-023-00094-1获取的补充材料。

相似文献

1
Virtual Fluorescence Translation for Biological Tissue by Conditional Generative Adversarial Network.
Phenomics. 2023 Mar 2;3(4):408-420. doi: 10.1007/s43657-023-00094-1. eCollection 2023 Aug.
2
Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221085358. doi: 10.1177/15330338221085358.
4
A Computationally Virtual Histological Staining Method to Ovarian Cancer Tissue by Deep Generative Adversarial Networks.
Comput Math Methods Med. 2021 Jul 1;2021:4244157. doi: 10.1155/2021/4244157. eCollection 2021.
5
Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning.
Nat Biomed Eng. 2019 Jun;3(6):466-477. doi: 10.1038/s41551-019-0362-y. Epub 2019 Mar 4.
6
Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
Magn Reson Med. 2019 Sep;82(3):901-910. doi: 10.1002/mrm.27772. Epub 2019 Apr 22.
8
Stain color translation of multi-domain OSCC histopathology images using attention gated cGAN.
Comput Med Imaging Graph. 2023 Jun;106:102202. doi: 10.1016/j.compmedimag.2023.102202. Epub 2023 Feb 24.
9
A pavement crack synthesis method based on conditional generative adversarial networks.
Math Biosci Eng. 2024 Jan;21(1):903-923. doi: 10.3934/mbe.2024038. Epub 2022 Dec 21.
10
MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network.
Methods. 2022 Aug;204:368-375. doi: 10.1016/j.ymeth.2022.04.004. Epub 2022 Apr 28.

引用本文的文献

1
Trustworthy in silico cell labeling via ensemble-based image translation.
Biophys Rep (N Y). 2023 Oct 18;3(4):100133. doi: 10.1016/j.bpr.2023.100133. eCollection 2023 Dec 13.

本文引用的文献

1
Emerging Advances to Transform Histopathology Using Virtual Staining.
BME Front. 2020 Aug 25;2020:9647163. doi: 10.34133/2020/9647163. eCollection 2020.
2
Translation of Cellular Protein Localization Using Convolutional Networks.
Front Cell Dev Biol. 2021 Aug 5;9:635231. doi: 10.3389/fcell.2021.635231. eCollection 2021.
3
Deep learning-based transformation of H&E stained tissues into special stains.
Nat Commun. 2021 Aug 12;12(1):4884. doi: 10.1038/s41467-021-25221-2.
4
5
Unsupervised content-preserving transformation for optical microscopy.
Light Sci Appl. 2021 Mar 1;10(1):44. doi: 10.1038/s41377-021-00484-y.
6
Single-cell cytometry via multiplexed fluorescence prediction by label-free reflectance microscopy.
Sci Adv. 2021 Jan 15;7(3). doi: 10.1126/sciadv.abe0431. Print 2021 Jan.
7
Practical fluorescence reconstruction microscopy for large samples and low-magnification imaging.
PLoS Comput Biol. 2020 Dec 23;16(12):e1008443. doi: 10.1371/journal.pcbi.1008443. eCollection 2020 Dec.
9
Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue.
Light Sci Appl. 2020 May 6;9:78. doi: 10.1038/s41377-020-0315-y. eCollection 2020.
10
Seamless Virtual Whole Slide Image Synthesis and Validation Using Perceptual Embedding Consistency.
IEEE J Biomed Health Inform. 2021 Feb;25(2):403-411. doi: 10.1109/JBHI.2020.2975151. Epub 2021 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验