Cheng Shiyi, Fu Sipei, Kim Yumi Mun, Song Weiye, Li Yunzhe, Xue Yujia, Yi Ji, Tian Lei
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
Department of Biology, Boston University, Boston, MA 02215, USA.
Sci Adv. 2021 Jan 15;7(3). doi: 10.1126/sciadv.abe0431. Print 2021 Jan.
Traditional imaging cytometry uses fluorescence markers to identify specific structures but is limited in throughput by the labeling process. We develop a label-free technique that alleviates the physical staining and provides multiplexed readouts via a deep learning-augmented digital labeling method. We leverage the rich structural information and superior sensitivity in reflectance microscopy and show that digital labeling predicts accurate subcellular features after training on immunofluorescence images. We demonstrate up to three times improvement in the prediction accuracy over the state of the art. Beyond fluorescence prediction, we demonstrate that single cell-level structural phenotypes of cell cycles are correctly reproduced by the digital multiplexed images, including Golgi twins, Golgi haze during mitosis, and DNA synthesis. We further show that the multiplexed readouts enable accurate multiparametric single-cell profiling across a large cell population. Our method can markedly improve the throughput for imaging cytometry toward applications for phenotyping, pathology, and high-content screening.
传统成像流式细胞术使用荧光标记物来识别特定结构,但标记过程限制了其通量。我们开发了一种无标记技术,该技术减轻了物理染色,并通过深度学习增强的数字标记方法提供多重读数。我们利用反射显微镜中丰富的结构信息和卓越的灵敏度,并表明数字标记在免疫荧光图像上训练后可预测准确的亚细胞特征。我们证明,与现有技术相比,预测准确率提高了两倍。除了荧光预测之外,我们还证明数字多重图像能够正确再现细胞周期的单细胞水平结构表型,包括高尔基体孪生体、有丝分裂期间的高尔基体模糊以及DNA合成。我们进一步表明,多重读数能够在大量细胞群体中实现准确的多参数单细胞分析。我们的方法可以显著提高成像流式细胞术在表型分析、病理学和高内涵筛选应用中的通量。