利用虚拟染色改变组织病理学的新进展
Emerging Advances to Transform Histopathology Using Virtual Staining.
作者信息
Rivenson Yair, de Haan Kevin, Wallace W Dean, Ozcan Aydogan
机构信息
Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.
Bioengineering Department, University of California, Los Angeles, CA, USA.
出版信息
BME Front. 2020 Aug 25;2020:9647163. doi: 10.34133/2020/9647163. eCollection 2020.
In an age where digitization is widespread in clinical and preclinical workflows, pathology is still predominantly practiced by microscopic evaluation of stained tissue specimens affixed on glass slides. Over the last decade, new high throughput digital scanning microscopes have ushered in the era of digital pathology that, along with recent advances in machine vision, have opened up new possibilities for Computer-Aided-Diagnoses. Despite these advances, the high infrastructural costs related to digital pathology and the perception that the digitization process is an additional and nondirectly reimbursable step have challenged its widespread adoption. Here, we discuss how emerging virtual staining technologies and machine learning can help to disrupt the standard histopathology workflow and create new avenues for the diagnostic paradigm that will benefit patients and healthcare systems alike via digital pathology.
在一个临床和临床前工作流程数字化广泛普及的时代,病理学仍主要通过对粘贴在载玻片上的染色组织标本进行显微镜评估来开展。在过去十年中,新型高通量数字扫描显微镜开启了数字病理学时代,这与机器视觉的最新进展一道,为计算机辅助诊断开辟了新的可能性。尽管有这些进展,但与数字病理学相关的高昂基础设施成本,以及认为数字化过程是一个额外的且无法直接报销的步骤这种观念,都对其广泛应用构成了挑战。在此,我们讨论新兴的虚拟染色技术和机器学习如何有助于打破标准的组织病理学工作流程,并为诊断范式创造新途径,这将通过数字病理学使患者和医疗系统都受益。