Suppr超能文献

利用基于人工智能的无标记成像技术研究活间充质基质细胞的异质性。

Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging.

机构信息

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.

Department of Computer Science, University of California, Los Angeles, 90095, USA.

出版信息

Sci Rep. 2021 Mar 24;11(1):6728. doi: 10.1038/s41598-021-85905-z.

Abstract

Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC-based research and therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a standard approach is to measure marker expression on the protein level via immunochemistry assays. Performing such measurements non-invasively and at scale has remained challenging as conventional methods such as flow cytometry and immunofluorescence microscopy typically require cell fixation and laborious sample preparation. Here, we developed an artificial intelligence (AI)-based method that converts transmitted light microscopy images of MSCs into quantitative measurements of protein expression levels. By training a U-Net+ conditional generative adversarial network (cGAN) model that accurately (mean [Formula: see text] = 0.77) predicts expression of 8 MSC-specific markers, we showed that expression of surface markers provides a heterogeneity characterization that is complementary to conventional cell-level morphological analyses. Using this label-free imaging method, we also observed a multi-marker temporal-spatial fluctuation of protein distributions in live MSCs. These demonstrations suggest that our AI-based microscopy can be utilized to perform quantitative, non-invasive, single-cell, and multi-marker characterizations of heterogeneous live MSC culture. Our method provides a foundational step toward the instant integrative assessment of MSC properties, which is critical for high-throughput screening and quality control in cellular therapies.

摘要

间充质基质细胞(MSCs)是多能细胞,在再生医学、组织修复和免疫治疗方面具有巨大潜力。不幸的是,基于 MSC 的研究和治疗的结果可能高度不一致且难以重现,这主要是由于 MSC 内在的显著异质性,而这种异质性尚未得到很好的研究。为了量化细胞异质性,一种标准方法是通过免疫化学测定法测量蛋白质水平上的标志物表达。由于传统方法(如流式细胞术和免疫荧光显微镜)通常需要细胞固定和繁琐的样品制备,因此以非侵入性和规模化方式进行此类测量仍然具有挑战性。在这里,我们开发了一种基于人工智能(AI)的方法,可将 MSC 的透射光显微镜图像转换为蛋白质表达水平的定量测量值。通过训练一个 U-Net+条件生成对抗网络(cGAN)模型,该模型可以准确(平均[公式:见正文] = 0.77)预测 8 个 MSC 特异性标志物的表达,我们表明表面标志物的表达提供了一种与传统细胞水平形态分析互补的异质性特征描述。使用这种无标记成像方法,我们还观察到活 MSC 中蛋白质分布的多标记时空波动。这些结果表明,我们的基于 AI 的显微镜可以用于对异质活 MSC 培养物进行定量、非侵入性、单细胞和多标记特征描述。我们的方法为即时综合评估 MSC 特性提供了一个基础步骤,这对于细胞治疗中的高通量筛选和质量控制至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eea/7991643/ad85e8dae06d/41598_2021_85905_Fig1_HTML.jpg

相似文献

1
6
Challenges and advances in clinical applications of mesenchymal stromal cells.
J Hematol Oncol. 2021 Feb 12;14(1):24. doi: 10.1186/s13045-021-01037-x.
7
Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.
Stem Cells Transl Med. 2012 Feb;1(2):83-95. doi: 10.5966/sctm.2011-0022. Epub 2012 Feb 7.
8
Dermal substitutes support the growth of human skin-derived mesenchymal stromal cells: potential tool for skin regeneration.
PLoS One. 2014 Feb 26;9(2):e89542. doi: 10.1371/journal.pone.0089542. eCollection 2014.
9
ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation.
Gene. 2020 Dec;763S:100031. doi: 10.1016/j.gene.2020.100031. Epub 2020 Mar 14.

引用本文的文献

1
Isolation and Analysis of Matched Osteoarthritic Cartilage Progenitor Cells and Bone Marrow Mesenchymal Stem Cells.
Cureus. 2025 Mar 19;17(3):e80844. doi: 10.7759/cureus.80844. eCollection 2025 Mar.
2
Narrative Review of Mesenchymal Stem Cell Therapy in Renal Diseases: Mechanisms, Clinical Applications, and Future Directions.
Stem Cells Int. 2024 Dec 11;2024:8658246. doi: 10.1155/sci/8658246. eCollection 2024.
4
Artificial Intelligence (AI): A Potential Game Changer in Regenerative Orthopedics-A Scoping Review.
Indian J Orthop. 2024 Jun 2;58(10):1362-1374. doi: 10.1007/s43465-024-01189-1. eCollection 2024 Oct.
5
Phenotyping senescent mesenchymal stromal cells using AI image translation.
Curr Res Biotechnol. 2023;5. doi: 10.1016/j.crbiot.2023.100120. Epub 2023 Feb 1.
6
Trustworthy in silico cell labeling via ensemble-based image translation.
Biophys Rep (N Y). 2023 Oct 18;3(4):100133. doi: 10.1016/j.bpr.2023.100133. eCollection 2023 Dec 13.
7
Virtual Fluorescence Translation for Biological Tissue by Conditional Generative Adversarial Network.
Phenomics. 2023 Mar 2;3(4):408-420. doi: 10.1007/s43657-023-00094-1. eCollection 2023 Aug.
9
Subcellular spatially resolved gene neighborhood networks in single cells.
Cell Rep Methods. 2023 May 12;3(5):100476. doi: 10.1016/j.crmeth.2023.100476. eCollection 2023 May 22.
10
High throughput screening of mesenchymal stem cell lines using deep learning.
Sci Rep. 2022 Oct 20;12(1):17507. doi: 10.1038/s41598-022-21653-y.

本文引用的文献

1
Senescence in Mesenchymal Stem Cells: Functional Alterations, Molecular Mechanisms, and Rejuvenation Strategies.
Front Cell Dev Biol. 2020 May 5;8:258. doi: 10.3389/fcell.2020.00258. eCollection 2020.
2
DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
PLoS Comput Biol. 2020 Apr 13;16(4):e1007673. doi: 10.1371/journal.pcbi.1007673. eCollection 2020 Apr.
3
Single-cell high-content imaging parameters predict functional phenotype of cultured human bone marrow stromal stem cells.
Stem Cells Transl Med. 2020 Feb;9(2):189-202. doi: 10.1002/sctm.19-0171. Epub 2019 Nov 23.
4
Stochastic Gene Expression Influences the Selection of Antibiotic Resistance Mutations.
Mol Biol Evol. 2020 Jan 1;37(1):58-70. doi: 10.1093/molbev/msz199.
5
Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction.
Nat Methods. 2019 Dec;16(12):1215-1225. doi: 10.1038/s41592-019-0458-z. Epub 2019 Jul 8.
6
Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning.
Nat Biomed Eng. 2019 Jun;3(6):466-477. doi: 10.1038/s41551-019-0362-y. Epub 2019 Mar 4.
7
Deep learning for cellular image analysis.
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.
8
Heterogeneity of Human Mesenchymal Stromal/Stem Cells.
Adv Exp Med Biol. 2019;1123:165-177. doi: 10.1007/978-3-030-11096-3_10.
9
Experimental Strategies of Mesenchymal Stem Cell Propagation: Adverse Events and Potential Risk of Functional Changes.
Stem Cells Int. 2019 Mar 6;2019:7012692. doi: 10.1155/2019/7012692. eCollection 2019.
10
Deep learning enables cross-modality super-resolution in fluorescence microscopy.
Nat Methods. 2019 Jan;16(1):103-110. doi: 10.1038/s41592-018-0239-0. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验