Suppr超能文献

ReeBundle:一种基于弥散磁共振成像的白质通路拓扑建模方法。

ReeBundle: A Method for Topological Modeling of White Matter Pathways Using Diffusion MRI.

出版信息

IEEE Trans Med Imaging. 2023 Dec;42(12):3725-3737. doi: 10.1109/TMI.2023.3306049. Epub 2023 Nov 30.

Abstract

Tractography can generate millions of complex curvilinear fibers (streamlines) in 3D that exhibit the geometry of white matter pathways in the brain. Common approaches to analyzing white matter connectivity are based on adjacency matrices that quantify connection strength but do not account for any topological information. A critical element in neurological and developmental disorders is the topological deterioration and irregularities in streamlines. In this paper, we propose a novel Reeb graph-based method "ReeBundle" that efficiently encodes the topology and geometry of white matter fibers. Given the trajectories of neuronal fiber pathways (neuroanatomical bundle), we re-bundle the streamlines by modeling their spatial evolution to capture geometrically significant events (akin to a fingerprint). ReeBundle parameters control the granularity of the model and handle the presence of improbable streamlines commonly produced by tractography. Further, we propose a new Reeb graph-based distance metric that quantifies topological differences for automated quality control and bundle comparison. We show the practical usage of our method using two datasets: (1) For International Society for Magnetic Resonance in Medicine (ISMRM) dataset, ReeBundle handles the morphology of the white matter tract configurations due to branching and local ambiguities in complicated bundle tracts like anterior and posterior commissures; (2) For the longitudinal repeated measures in the Cognitive Resilience and Sleep History (CRASH) dataset, repeated scans of a given subject acquired weeks apart lead to provably similar Reeb graphs that differ significantly from other subjects, thus highlighting ReeBundle's potential for clinical fingerprinting of brain regions.

摘要

束追踪可以在 3D 中生成数以百万计的复杂曲线纤维(流线),这些纤维展示了大脑白质通路的几何形状。常用的分析白质连通性的方法基于邻接矩阵,该矩阵量化连接强度,但不考虑任何拓扑信息。在神经和发育障碍中,一个关键元素是流线的拓扑恶化和不规则性。在本文中,我们提出了一种新颖的基于 Reeb 图的方法“ReeBundle”,该方法有效地编码了白质纤维的拓扑结构和几何形状。给定神经元纤维途径(神经解剖束)的轨迹,我们通过对其空间演化进行建模来重新捆绑流线,以捕捉具有几何意义的事件(类似于指纹)。ReeBundle 参数控制模型的粒度,并处理束追踪通常产生的不太可能的流线的存在。此外,我们提出了一种新的基于 Reeb 图的距离度量,用于量化拓扑差异,以实现自动质量控制和束比较。我们使用两个数据集展示了我们方法的实际应用:(1)对于国际磁共振医学学会(ISMRM)数据集,ReeBundle 处理了由于分支和复杂束如前联合和后联合中的局部歧义而导致的白质束形态;(2)对于认知弹性和睡眠历史(CRASH)数据集的纵向重复测量,给定被试的重复扫描相隔数周进行,导致可证明相似的 Reeb 图与其他被试显著不同,从而突出了 ReeBundle 用于大脑区域临床特征识别的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验