Shailja S, Zhang Angela, Manjunath B S
University of California, Santa Barbara, CA 93117, USA.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12908:175-185. doi: 10.1007/978-3-030-87237-3_17. Epub 2021 Sep 21.
We propose a novel and efficient algorithm to model high-level topological structures of neuronal fibers. Tractography constructs complex neuronal fibers in three dimensions that exhibit the geometry of white matter pathways in the brain. However, most tractography analysis methods are time consuming and intractable. We develop a computational geometry-based tractography representation that aims to simplify the connectivity of white matter fibers. Given the trajectories of neuronal fiber pathways, we model the evolution of trajectories that encodes geometrically significant events and calculate their point correspondence in the 3D brain space. Trajectory inter-distance is used as a parameter to control the granularity of the model that allows local or global representation of the tractogram. Using diffusion MRI data from Alzheimer's patient study, we extract tractography features from our model for distinguishing the Alzheimer's subject from the normal control. Software implementation of our algorithm is available on GitHub (https://github.com/UCSB-VRL/ReebGraph.
我们提出了一种新颖且高效的算法来对神经元纤维的高级拓扑结构进行建模。纤维束成像在三维空间中构建复杂的神经元纤维,展现出大脑白质通路的几何结构。然而,大多数纤维束成像分析方法既耗时又难以处理。我们开发了一种基于计算几何的纤维束成像表示方法,旨在简化白质纤维的连接性。给定神经元纤维通路的轨迹,我们对编码具有几何意义事件的轨迹演化进行建模,并计算它们在三维脑空间中的点对应关系。轨迹间距离用作控制模型粒度的参数,该参数允许对纤维束成像进行局部或全局表示。利用来自阿尔茨海默病患者研究的扩散磁共振成像数据,我们从模型中提取纤维束成像特征,以区分阿尔茨海默病患者和正常对照。我们算法的软件实现可在GitHub上获取(https://github.com/UCSB-VRL/ReebGraph)。