Suppr超能文献

基于非平衡数据的企业员工离职倾向预测与优化。

Prediction and optimization of employee turnover intentions in enterprises based on unbalanced data.

机构信息

Metropolitan College, Boston University, Boston, Massachusetts, United States of America.

Department of Computer Science, Virginia Tech, Arlington, Virginia, United States of America.

出版信息

PLoS One. 2023 Aug 17;18(8):e0290086. doi: 10.1371/journal.pone.0290086. eCollection 2023.

Abstract

The sudden resignation of core employees often brings losses to companies in various aspects. Traditional employee turnover theory cannot analyze the unbalanced data of employees comprehensively, which leads the company to make wrong decisions. In the face the classification of unbalanced data, the traditional Support Vector Machine (SVM) suffers from insufficient decision plane offset and unbalanced support vector distribution, for which the Synthetic Minority Oversampling Technique (SMOTE) is introduced to improve the balance of generated data. Further, the Fuzzy C-mean (FCM) clustering is improved and combined with the SMOTE (IFCM-SMOTE-SVM) to new synthesized samples with higher accuracy, solving the drawback that the separation data synthesized by SMOTE is too random and easy to generate noisy data. The kernel function is combined with IFCM-SMOTE-SVM and transformed to a high-dimensional space for clustering sampling and classification, and the kernel space-based classification algorithm (KS-IFCM-SMOTE-SVM) is proposed, which improves the effectiveness of the generated data on SVM classification results. Finally, the generalization ability of KS-IFCM-SMOTE-SVM for different types of enterprise data is experimentally demonstrated, and it is verified that the proposed algorithm has stable and accurate performance. This study introduces the SMOTE and FCM clustering, and improves the SVM by combining the data transformation in the kernel space to achieve accurate classification of unbalanced data of employees, which helps enterprises to predict whether employees have the tendency to leave in advance.

摘要

核心员工的突然离职往往会给公司带来多方面的损失。传统的员工离职理论不能全面分析员工的不平衡数据,导致公司做出错误的决策。面对不平衡数据的分类,传统的支持向量机(SVM)在决策面偏移和不平衡支持向量分布方面存在不足,为此引入了合成少数过采样技术(SMOTE)来提高生成数据的平衡性。进一步改进模糊 C-均值(FCM)聚类,并将其与 SMOTE(IFCM-SMOTE-SVM)结合,以更高的准确性生成新的合成样本,解决了 SMOTE 合成的分离数据过于随机且容易生成噪声数据的缺点。将核函数与 IFCM-SMOTE-SVM 相结合并转换到高维空间进行聚类采样和分类,提出了基于核空间的分类算法(KS-IFCM-SMOTE-SVM),提高了生成数据对 SVM 分类结果的有效性。最后,通过实验验证了 KS-IFCM-SMOTE-SVM 对不同类型企业数据的泛化能力,验证了所提出的算法具有稳定而准确的性能。本研究引入了 SMOTE 和 FCM 聚类,并通过在核空间中结合数据转换来改进 SVM,实现了对员工不平衡数据的准确分类,帮助企业提前预测员工是否有离职倾向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0423/10434939/044e3359030e/pone.0290086.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验