Suppr超能文献

使用鲸鱼优化支持向量机对肝脏生物转化药物的毒性效应进行分类

Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines.

作者信息

Tharwat Alaa, Moemen Yasmine S, Hassanien Aboul Ella

机构信息

Faculty of Engineering, Suez Canal University, Ismailia, Egypt; Scientific Research Group in Egypt (SRGE), Egypt(1).

Scientific Research Group in Egypt (SRGE), Egypt(1); Clinical Pathology Department, National Liver Institute, Menoufia University, Egypt.

出版信息

J Biomed Inform. 2017 Apr;68:132-149. doi: 10.1016/j.jbi.2017.03.002. Epub 2017 Mar 8.

Abstract

Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA+SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development.

摘要

测量毒性是药物研发中的重要一步。然而,目前用于估计药物毒性的实验方法既昂贵又耗时,这表明它们不适用于在药物研发早期对药物毒性进行大规模评估。因此,迫切需要开发能够预测药物毒性风险的计算模型。在本研究中,我们使用了一个由553种在肝脏中进行生物转化的药物组成的数据集。针对当前数据计算了毒性效应,即致突变性、致癌性、刺激性和生殖效应。每种药物由31个化学描述符(特征)表示。所提出的模型包括三个阶段。在第一阶段,使用基于粗糙集的方法选择最具判别力的特征子集,以减少分类时间并提高分类性能。在第二阶段,使用不同的采样方法,如随机欠采样、随机过采样和合成少数过采样技术(SMOTE)、边界线SMOTE和安全水平SMOTE来解决数据集不平衡的问题。在第三阶段,使用支持向量机(SVM)分类器将未知药物分类为有毒或无毒。SVM参数,如惩罚参数和核参数,对模型的分类精度有很大影响。在本文中,提出了鲸鱼优化算法(WOA)来优化SVM的参数,从而降低分类误差。实验结果证明,所提出的模型对所有毒性效应都具有高灵敏度。总体而言,WOA+SVM模型的高灵敏度表明它可用于药物研发早期的药物毒性预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验