Department of Human Development and Family Studies, The Pennsylvania State University.
Multivariate Behav Res. 2024 Nov-Dec;59(6):1240-1252. doi: 10.1080/00273171.2023.2235685. Epub 2023 Aug 17.
Rapid developments over the last several decades have brought increased focus and attention to the role of time scales and heterogeneity in the modeling of human processes. To address these emerging questions, subgrouping methods developed in the discrete-time framework-such as the vector autoregression (VAR)-have undergone widespread development to identify shared nomothetic trends from idiographic modeling results. Given the dependence of VAR-based parameters on the measurement intervals of the data, we sought to clarify the strengths and limitations of these methods in recovering subgroup dynamics under different measurement intervals. Building on the work of Molenaar and collaborators for subgrouping individual time-series by means of the subgrouped chain graphical VAR (scgVAR) and the subgrouping option in the group iterative multiple model estimation (S-GIMME), we present results from a Monte Carlo study aimed at addressing the implications of identifying subgroups using these discrete-time methods when applied to continuous-time data. Results indicate that discrete-time subgrouping methods perform well at recovering true subgroups when the measurement intervals are large enough to capture the full range of a system's dynamics, either lagged or contemporaneous effects. Further implications and limitations are discussed therein.
在过去几十年中,快速的发展使得人们越来越关注时间尺度和异质性在人类过程建模中的作用。为了解决这些新出现的问题,在离散时间框架中开发的子组化方法,如向量自回归(VAR),已经得到了广泛的发展,以从个体化建模结果中识别共同的规律趋势。鉴于 VAR 基于的参数取决于数据的测量间隔,我们试图澄清这些方法在不同测量间隔下恢复子组动态的优缺点。基于 Molenaar 及其合作者的工作,通过子组化连锁图形向量自回归(scgVAR)和群组迭代多模型估计(S-GIMME)中的子组化选项对子序列进行子组化,我们提出了一项蒙特卡罗研究的结果,旨在解决当应用于连续时间数据时,使用这些离散时间方法识别子组的影响。结果表明,当测量间隔足够大以捕捉系统动态的全部范围时,无论是滞后还是同期效应,离散时间子组化方法在恢复真实子组方面表现良好。进一步的影响和限制也在其中进行了讨论。