Suppr超能文献

情感与人格:动态网络模型中(非)方向性建模的影响

Affect and Personality: Ramifications of Modeling (Non-)Directionality in Dynamic Network Models.

作者信息

Park Jonathan J, Chow Sy-Miin, Fisher Zachary F, Molenaar Peter C M

机构信息

The Pennsylvania State University.

University of North Carolina at Chapel Hill.

出版信息

Eur J Psychol Assess. 2020;36(6):1009-1023. doi: 10.1027/1015-5759/a000612.

Abstract

The use of dynamic network models has grown in recent years. These models allow researchers to capture both lagged and contemporaneous effects in longitudinal data typically as variations, reformulations, or extensions of the standard vector autoregressive (VAR) models. To date, many of these dynamic networks have not been explicitly compared to one another. We compare three popular dynamic network approaches-GIMME, uSEM, and LASSO gVAR-in terms of their differences in modeling assumptions, estimation procedures, statistical properties based on a Monte Carlo simulation, and implications for affect and personality researchers. We found that all three approaches dynamic networks provided yielded group-level empirical results in partial support of affect and personality theories. However, individual-level results revealed a great deal of heterogeneity across approaches and participants. Reasons for discrepancies are discussed alongside these approaches' respective strengths and limitations.

摘要

近年来,动态网络模型的应用不断增加。这些模型使研究人员能够捕捉纵向数据中的滞后效应和同期效应,通常是作为标准向量自回归(VAR)模型的变体、重新表述或扩展。到目前为止,许多这些动态网络尚未相互进行明确比较。我们从建模假设、估计程序、基于蒙特卡罗模拟的统计特性以及对情感和人格研究人员的影响等方面,比较了三种流行的动态网络方法——GIMME、uSEM和LASSO gVAR。我们发现所有这三种动态网络方法都得出了部分支持情感和人格理论的群体层面实证结果。然而,个体层面的结果显示不同方法和参与者之间存在很大的异质性。在讨论这些差异原因的同时,也阐述了这些方法各自的优势和局限性。

相似文献

3
Evaluating Discrete Time Methods for Subgrouping Continuous Processes.评估用于连续过程分组的离散时间方法。
Multivariate Behav Res. 2024 Nov-Dec;59(6):1240-1252. doi: 10.1080/00273171.2023.2235685. Epub 2023 Aug 17.
4
Dealing with Multiple Solutions in Structural Vector Autoregressive Models.处理结构向量自回归模型中的多个解
Multivariate Behav Res. 2016 Mar-Jun;51(2-3):357-73. doi: 10.1080/00273171.2016.1151333. Epub 2016 Apr 19.
8
Subgrouping with Chain Graphical VAR Models.基于链式图 VAR 模型的子群分组。
Multivariate Behav Res. 2024 May-Jun;59(3):543-565. doi: 10.1080/00273171.2023.2289058. Epub 2024 Feb 13.

引用本文的文献

2
Unsupervised Model Construction in Continuous-Time.连续时间下的无监督模型构建
Struct Equ Modeling. 2025;32(3):377-399. doi: 10.1080/10705511.2024.2429544. Epub 2024 Dec 16.
5
Subgrouping with Chain Graphical VAR Models.基于链式图 VAR 模型的子群分组。
Multivariate Behav Res. 2024 May-Jun;59(3):543-565. doi: 10.1080/00273171.2023.2289058. Epub 2024 Feb 13.
7
Evaluating Discrete Time Methods for Subgrouping Continuous Processes.评估用于连续过程分组的离散时间方法。
Multivariate Behav Res. 2024 Nov-Dec;59(6):1240-1252. doi: 10.1080/00273171.2023.2235685. Epub 2023 Aug 17.

本文引用的文献

1
Handling Missing Data in the Modeling of Intensive Longitudinal Data.密集纵向数据建模中的缺失数据处理
Struct Equ Modeling. 2018;25(5):715-736. doi: 10.1080/10705511.2017.1417046. Epub 2018 Feb 8.
2
A Diagnostic Procedure for Detecting Outliers in Linear State-Space Models.一种用于检测线性状态空间模型中异常值的诊断程序。
Multivariate Behav Res. 2020 Mar-Apr;55(2):231-255. doi: 10.1080/00273171.2019.1627659. Epub 2019 Jul 2.
7
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.
9
Network Mapping with GIMME.使用 GIMME 进行网络映射。
Multivariate Behav Res. 2017 Nov-Dec;52(6):789-804. doi: 10.1080/00273171.2017.1373014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验