Suppr超能文献

精确电化学测量单个电惰性颗粒。

Precise Electrochemical Sizing of Individual Electro-Inactive Particles.

机构信息

Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara.

Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara; Department of Chemistry and Biochemistry, University of California at Santa Barbara.

出版信息

J Vis Exp. 2023 Aug 4(198). doi: 10.3791/65116.

Abstract

Nanoimpact electrochemistry enables the time-resolved in situ characterization (e.g., size, catalytic activity) of single nanomaterial units, providing a means of elucidating heterogeneities that would be masked in ensemble studies. To implement this technique with redox inactive particles, a solution-phase redox reaction is used to produce a steady-state background current on a disk ultramicroelectrode. When a particle adsorbs onto the electrode, it produces a stepwise reduction in the exposed electrode area, which produces, in turn, a stepwise decrease in the current commensurate with the size of the adsorbing species. Historically, however, nanoimpact electrochemistry has suffered from "edge effects," in which the radial diffusion layer formed at the circumference of the ultramicroelectrodes renders the step size dependent not only on the size of the particle but also on where it lands on the electrode. The introduction of electrocatalytic current generation, however, mitigates the heterogeneity caused by edge effects, thus improving the measurement precision. In this approach, termed "electrocatalytic interruption," a substrate that regenerates the redox probe at the diffusion layer is introduced. This shifts the rate-limiting step of the current generation from diffusion to the homogeneous reaction rate constant, thus reducing flux heterogeneity and increasing the precision of particle sizing by an order of magnitude. The protocol described here explains the set-up and data collection employed in nanoimpact experiments implementing this effect for improved precision in the sizing of redox in-active materials.

摘要

纳米冲击电化学能够实时原位表征(例如,尺寸、催化活性)单个纳米材料单元,提供了一种阐明在整体研究中被掩盖的异质性的方法。为了在不具有氧化还原活性的颗粒上实现该技术,使用溶液相氧化还原反应在盘状超微电极上产生稳态背景电流。当颗粒吸附到电极上时,它会导致暴露的电极面积逐步减小,这反过来又会导致电流逐步减小,与吸附物质的尺寸成正比。然而,历史上纳米冲击电化学一直受到“边缘效应”的困扰,即在超微电极的圆周上形成的径向扩散层使得阶跃大小不仅取决于颗粒的大小,还取决于它在电极上的位置。然而,引入电催化电流产生可以减轻边缘效应引起的异质性,从而提高测量精度。在这种方法中,称为“电催化中断”,在扩散层中引入了一种可以再生氧化还原探针的基底。这将电流产生的限速步骤从扩散转移到均相反应速率常数,从而减少通量异质性,并将颗粒尺寸测量的精度提高一个数量级。这里描述的方案解释了为提高氧化还原非活性材料的尺寸测量精度而在纳米冲击实验中采用的设置和数据采集。

相似文献

3
Single-Nanoparticle Electrochemistry through Immobilization and Collision.通过固定化和碰撞实现单纳米颗粒电化学。
Acc Chem Res. 2016 Nov 15;49(11):2625-2631. doi: 10.1021/acs.accounts.6b00334. Epub 2016 Oct 12.
6
Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry.环型超微电极用于电流阻塞粒子撞击电化学。
Anal Chem. 2022 Jul 19;94(28):10168-10174. doi: 10.1021/acs.analchem.2c01503. Epub 2022 Jul 6.
7
Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations.活性和部分活性电极处的纳米冲击:见解与局限
Angew Chem Int Ed Engl. 2020 Oct 19;59(43):19184-19192. doi: 10.1002/anie.202007148. Epub 2020 Aug 26.
10
Advancing Techniques for Investigating the Enzyme-Electrode Interface.探索酶-电极界面的技术进展。
Acc Chem Res. 2019 May 21;52(5):1439-1448. doi: 10.1021/acs.accounts.9b00087. Epub 2019 May 1.

引用本文的文献

1
Recent Developments in Single-Entity Electrochemistry.单实体电化学的最新进展
Anal Chem. 2024 May 21;96(20):8036-8055. doi: 10.1021/acs.analchem.4c01406. Epub 2024 May 10.

本文引用的文献

1
Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry.环型超微电极用于电流阻塞粒子撞击电化学。
Anal Chem. 2022 Jul 19;94(28):10168-10174. doi: 10.1021/acs.analchem.2c01503. Epub 2022 Jul 6.
5
Single-Entity Electrochemistry for Digital Biosensing at Ultralow Concentrations.单粒子电化学在超低浓度下的数字生物传感
Anal Chem. 2021 Jul 6;93(26):9023-9031. doi: 10.1021/acs.analchem.1c00510. Epub 2021 Jun 24.
6
Perspective and Prospectus on Single-Entity Electrochemistry.单粒子电化学的展望和透视。
J Am Chem Soc. 2018 Nov 21;140(46):15549-15559. doi: 10.1021/jacs.8b09747. Epub 2018 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验