Suppr超能文献

超积累植物中稀土元素的高能无干扰 K 线同步辐射 X 射线荧光显微镜技术。

High-energy interference-free K-lines synchrotron X-ray fluorescence microscopy of rare earth elements in hyperaccumulator plants.

机构信息

Université de Lorraine, INRAE, LSE, F-54000 Nancy, France.

Laboratory of Genetics, Wageningen University and Research, The Netherlands.

出版信息

Metallomics. 2023 Sep 5;15(9). doi: 10.1093/mtomcs/mfad050.

Abstract

Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY). A combination of compound refractive lens optics (CRLs) was used to obtain a micrometer-sized focused incident beam with an energy of 44 keV and an extra-thick silicon drift detector optimized for high-energy X-ray detection to detect the K-lines of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) without any interferences due to line overlaps. High-energy excitation from La to Nd in the hyperaccumulator organs was successful but compared to L-line excitation less efficient and therefore slow (∼10-fold slower than similar maps at lower incident energy) due to lower flux and detection efficiency. However, REE K-lines do not suffer significantly from self-absorption, which makes XRF tomography of millimeter-sized frozen-hydrated plant samples possible. The K-line excitation of REEs at the P06 CRL setup has scope for application in samples that are particularly prone to REE interfering elements, such as soil samples with high concomitant Ti, Cr, Fe, Mn, and Ni concentrations.

摘要

基于同步加速器的微 X 射线荧光分析(µXRF)是一种非破坏性且高灵敏度的技术。然而,在标准条件下对稀土元素(REE)进行元素映射需要小心,因为能量色散探测器无法准确区分重叠的 REE L 壳层 X 射线发射线与常见过渡元素的 K 壳层 X 射线发射线。我们旨在测试利用高能无干扰激发 REE K 线对超积累植物组织进行 REE 元素映射,并与在 PETRA III、DESY 的 P06 微探针实验中利用 REE L 壳层激发进行的测量进行比较。使用复合折射透镜光学器件(CRLs)组合来获得能量为 44 keV 的微米级聚焦入射束,以及针对高能 X 射线检测进行优化的超厚硅漂移探测器,以检测钇(Y)、镧(La)、铈(Ce)、镨(Pr)和钕(Nd)的 K 线,而不会由于线重叠而产生任何干扰。在超积累器官中从 La 到 Nd 的高能激发是成功的,但与 L 线激发相比效率较低,因此较慢(比在较低入射能量下类似的图谱慢约 10 倍),这是由于通量和检测效率较低所致。然而,REE K 线不会受到显著的自吸收影响,这使得毫米大小的冷冻水合植物样品的 XRF 层析成像成为可能。在 P06 CRL 装置中,REE 的 K 线激发具有在特别容易受到 REE 干扰元素影响的样品中应用的潜力,例如同时含有高浓度 Ti、Cr、Fe、Mn 和 Ni 的土壤样品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f585/10496025/bf3bd396db34/mfad050fig1g.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验