Suppr超能文献

队列资料简介:开发机器学习模型以预测与医疗保健相关的不良事件(Demeter):临床目标、建模数据要求以及 2016-2018 年数据集概述。

Cohort profile for development of machine learning models to predict healthcare-related adverse events (Demeter): clinical objectives, data requirements for modelling and overview of data set for 2016-2018.

机构信息

Public Health Department, INSERM CIC1406, CHU Grenoble Alpes, Grenoble, France.

TIMC, CNRS UMR5525, Université Grenoble Alpes, Grenoble, France.

出版信息

BMJ Open. 2023 Aug 17;13(8):e070929. doi: 10.1136/bmjopen-2022-070929.

Abstract

PURPOSE

In-hospital health-related adverse events (HAEs) are a major concern for hospitals worldwide. In high-income countries, approximately 1 in 10 patients experience HAEs associated with their hospital stay. Estimating the risk of an HAE at the individual patient level as accurately as possible is one of the first steps towards improving patient outcomes. Risk assessment can enable healthcare providers to target resources to patients in greatest need through adaptations in processes and procedures. Electronic health data facilitates the application of machine-learning methods for risk analysis. We aim, first to reveal correlations between HAE occurrence and patients' characteristics and/or the procedures they undergo during their hospitalisation, and second, to build models that allow the early identification of patients at an elevated risk of HAE.

PARTICIPANTS

143 865 adult patients hospitalised at Grenoble Alpes University Hospital (France) between 1 January 2016 and 31 December 2018.

FINDINGS TO DATE

In this set-up phase of the project, we describe the preconditions for big data analysis using machine-learning methods. We present an overview of the retrospective de-identified multisource data for a 2-year period extracted from the hospital's Clinical Data Warehouse, along with social determinants of health data from the National Institute of Statistics and Economic Studies, to be used in machine learning (artificial intelligence) training and validation. No supplementary information or evaluation on the part of medical staff will be required by the information system for risk assessment.

FUTURE PLANS

We are using this data set to develop predictive models for several general HAEs including secondary intensive care admission, prolonged hospital stay, 7-day and 30-day re-hospitalisation, nosocomial bacterial infection, hospital-acquired venous thromboembolism, and in-hospital mortality.

摘要

目的

院内与健康相关的不良事件(HAE)是全球医院关注的主要问题。在高收入国家,约每 10 名患者中就有 1 名患者在住院期间发生与住院相关的 HAE。尽可能准确地评估个体患者发生 HAE 的风险是改善患者预后的首要步骤之一。风险评估可以使医疗保健提供者通过调整流程和程序,将资源靶向提供给最需要的患者。电子健康数据促进了机器学习方法在风险分析中的应用。我们的目标首先是揭示 HAE 发生与患者特征和/或他们在住院期间所经历的程序之间的相关性,其次是建立模型,以便早期识别 HAE 风险较高的患者。

参与者

2016 年 1 月 1 日至 2018 年 12 月 31 日期间在格勒诺布尔阿尔卑斯大学医院住院的 143865 名成年患者。

迄今为止的发现

在项目的这个设置阶段,我们描述了使用机器学习方法进行大数据分析的前提条件。我们介绍了从医院临床数据仓库中提取的为期 2 年的回顾性去识别多源数据的概述,以及来自国家统计与经济研究所的健康社会决定因素数据,这些数据将用于机器学习(人工智能)培训和验证。信息系统在风险评估方面不需要医疗人员提供任何补充信息或评估。

未来计划

我们正在使用这个数据集为几种常见的 HAE 开发预测模型,包括二次重症监护入院、延长住院时间、7 天和 30 天再入院、医院获得性细菌感染、医院获得性静脉血栓栓塞和院内死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c5a/10441093/df9ff29eca95/bmjopen-2022-070929f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验