Department of Visceral, Transplant and Thoracic Surgery, OrganLife , Medical University of Innsbruck, Innsbruck, Austria.
Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria.
Transplantation. 2024 Feb 1;108(2):506-515. doi: 10.1097/TP.0000000000004757. Epub 2024 Jan 19.
Biliary complications (BCs) negatively impact the outcome after liver transplantation. We herein tested whether hyperspectral imaging (HSI) generated data from bile ducts (BD) on reperfusion and machine learning techniques for data readout may serve as a novel approach for predicting BC.
Tissue-specific data from 136 HSI liver images were integrated into a convolutional neural network (CNN). Fourteen patients undergoing liver transplantation after normothermic machine preservation served as a validation cohort. Assessment of oxygen saturation, organ hemoglobin, and tissue water levels through HSI was performed after completing the biliary anastomosis. Resected BD segments were analyzed by immunohistochemistry and real-time confocal microscopy.
Immunohistochemistry and real-time confocal microscopy revealed mild (grade I: 1%-40%) BD damage in 8 patients and moderate (grade II: 40%-80%) injury in 1 patient. Donor and recipient data alone had no predictive capacity toward BC. Deep learning-based analysis of HSI data resulted in >90% accuracy of automated detection of BD. The CNN-based analysis yielded a correct classification in 72% and 69% for BC/no BC. The combination of HSI with donor and recipient factors showed 94% accuracy in predicting BC.
Deep learning-based modeling using CNN of HSI-based tissue property data represents a noninvasive technique for predicting postoperative BC.
胆道并发症(BCs)会对肝移植后的结果产生负面影响。我们在此测试了再灌注时胆管(BD)的高光谱成像(HSI)生成数据和用于数据读取的机器学习技术是否可以作为预测 BC 的新方法。
将 136 个 HSI 肝脏图像的组织特异性数据整合到卷积神经网络(CNN)中。14 名接受常温机械保存后肝移植的患者作为验证队列。完成胆管吻合后,通过 HSI 评估氧饱和度、器官血红蛋白和组织水平。通过免疫组织化学和实时共聚焦显微镜分析切除的 BD 段。
免疫组织化学和实时共聚焦显微镜显示 8 例患者的 BD 损伤轻微(I 级:1%-40%),1 例患者中度损伤(II 级:40%-80%)。仅供体和受体数据对 BC 没有预测能力。基于深度学习的 HSI 数据分析结果显示,BD 的自动检测准确率>90%。基于 CNN 的分析对 BC/非 BC 的正确分类分别为 72%和 69%。HSI 与供体和受体因素的结合可预测 BC 的准确率达到 94%。
基于 CNN 的 HSI 组织特性数据的深度学习建模代表了一种预测术后 BC 的非侵入性技术。