Suppr超能文献

基于高光谱成像和卷积神经网络预测肝移植术后胆道并发症:概念验证研究。

Prediction of Biliary Complications After Human Liver Transplantation Using Hyperspectral Imaging and Convolutional Neural Networks: A Proof-of-concept Study.

机构信息

Department of Visceral, Transplant and Thoracic Surgery, OrganLife , Medical University of Innsbruck, Innsbruck, Austria.

Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria.

出版信息

Transplantation. 2024 Feb 1;108(2):506-515. doi: 10.1097/TP.0000000000004757. Epub 2024 Jan 19.

Abstract

BACKGROUND

Biliary complications (BCs) negatively impact the outcome after liver transplantation. We herein tested whether hyperspectral imaging (HSI) generated data from bile ducts (BD) on reperfusion and machine learning techniques for data readout may serve as a novel approach for predicting BC.

METHODS

Tissue-specific data from 136 HSI liver images were integrated into a convolutional neural network (CNN). Fourteen patients undergoing liver transplantation after normothermic machine preservation served as a validation cohort. Assessment of oxygen saturation, organ hemoglobin, and tissue water levels through HSI was performed after completing the biliary anastomosis. Resected BD segments were analyzed by immunohistochemistry and real-time confocal microscopy.

RESULTS

Immunohistochemistry and real-time confocal microscopy revealed mild (grade I: 1%-40%) BD damage in 8 patients and moderate (grade II: 40%-80%) injury in 1 patient. Donor and recipient data alone had no predictive capacity toward BC. Deep learning-based analysis of HSI data resulted in >90% accuracy of automated detection of BD. The CNN-based analysis yielded a correct classification in 72% and 69% for BC/no BC. The combination of HSI with donor and recipient factors showed 94% accuracy in predicting BC.

CONCLUSIONS

Deep learning-based modeling using CNN of HSI-based tissue property data represents a noninvasive technique for predicting postoperative BC.

摘要

背景

胆道并发症(BCs)会对肝移植后的结果产生负面影响。我们在此测试了再灌注时胆管(BD)的高光谱成像(HSI)生成数据和用于数据读取的机器学习技术是否可以作为预测 BC 的新方法。

方法

将 136 个 HSI 肝脏图像的组织特异性数据整合到卷积神经网络(CNN)中。14 名接受常温机械保存后肝移植的患者作为验证队列。完成胆管吻合后,通过 HSI 评估氧饱和度、器官血红蛋白和组织水平。通过免疫组织化学和实时共聚焦显微镜分析切除的 BD 段。

结果

免疫组织化学和实时共聚焦显微镜显示 8 例患者的 BD 损伤轻微(I 级:1%-40%),1 例患者中度损伤(II 级:40%-80%)。仅供体和受体数据对 BC 没有预测能力。基于深度学习的 HSI 数据分析结果显示,BD 的自动检测准确率>90%。基于 CNN 的分析对 BC/非 BC 的正确分类分别为 72%和 69%。HSI 与供体和受体因素的结合可预测 BC 的准确率达到 94%。

结论

基于 CNN 的 HSI 组织特性数据的深度学习建模代表了一种预测术后 BC 的非侵入性技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验