Suppr超能文献

常温机器灌注期间的高光谱成像——基于卷积神经网络的离体肾脏功能分类

Hyperspectral Imaging during Normothermic Machine Perfusion-A Functional Classification of Ex Vivo Kidneys Based on Convolutional Neural Networks.

作者信息

Sommer Florian, Sun Bingrui, Fischer Julian, Goldammer Miriam, Thiele Christine, Malberg Hagen, Markgraf Wenke

机构信息

Institute of Biomedical Engineering, Technische Universität Dresden, 01307 Dresden, Germany.

出版信息

Biomedicines. 2022 Feb 7;10(2):397. doi: 10.3390/biomedicines10020397.

Abstract

Facing an ongoing organ shortage in transplant medicine, strategies to increase the use of organs from marginal donors by objective organ assessment are being fostered. In this context, normothermic machine perfusion provides a platform for ex vivo organ evaluation during preservation. Consequently, analytical tools are emerging to determine organ quality. In this study, hyperspectral imaging (HSI) in the wavelength range of 550-995 nm was applied. Classification of 26 kidneys based on HSI was established using KidneyResNet, a convolutional neural network (CNN) based on the ResNet-18 architecture, to predict inulin clearance behavior. HSI preprocessing steps were implemented, including automated region of interest (ROI) selection, before executing the KidneyResNet algorithm. Training parameters and augmentation methods were investigated concerning their influence on the prediction. When classifying individual ROIs, the optimized KidneyResNet model achieved 84% and 62% accuracy in the validation and test set, respectively. With a majority decision on all ROIs of a kidney, the accuracy increased to 96% (validation set) and 100% (test set). These results demonstrate the feasibility of HSI in combination with KidneyResNet for non-invasive prediction of ex vivo kidney function. This knowledge of preoperative renal quality may support the organ acceptance decision.

摘要

面对移植医学中持续存在的器官短缺问题,通过客观的器官评估来增加边缘供体器官使用的策略正在得到推广。在这种背景下,常温机器灌注为器官保存期间的体外器官评估提供了一个平台。因此,用于确定器官质量的分析工具正在不断涌现。在本研究中,应用了波长范围为550 - 995 nm的高光谱成像(HSI)技术。使用基于ResNet - 18架构的卷积神经网络(CNN)KidneyResNet,基于HSI对26个肾脏进行分类,以预测菊粉清除行为。在执行KidneyResNet算法之前,实施了HSI预处理步骤,包括自动选择感兴趣区域(ROI)。研究了训练参数和增强方法对预测的影响。在对单个ROI进行分类时,优化后的KidneyResNet模型在验证集和测试集中的准确率分别达到了84%和62%。通过对肾脏所有ROI进行多数决策,准确率分别提高到了96%(验证集)和100%(测试集)。这些结果证明了HSI结合KidneyResNet对体外肾功能进行无创预测的可行性。术前肾脏质量的这一知识可能有助于器官接受决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5684/8962340/c89e704b9836/biomedicines-10-00397-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验