Suppr超能文献

异常运动捕捉在急性脑卒中中的应用(仿生学):一种用于脑卒中患者上肢功能自动评估的低成本远程评估工具。

aBnormal motION capture In aCute Stroke (BIONICS): A Low-Cost Tele-Evaluation Tool for Automated Assessment of Upper Extremity Function in Stroke Patients.

机构信息

Louisiana State University Health New Orleans School of Medicine, New Orleans, LA, USA.

School of Biomedical Informatics, UTHealth, Houston, TX, USA.

出版信息

Neurorehabil Neural Repair. 2023 Sep;37(9):591-602. doi: 10.1177/15459683231184186. Epub 2023 Aug 17.

Abstract

BACKGROUND

The incidence of stroke and stroke-related hemiparesis has been steadily increasing and is projected to become a serious social, financial, and physical burden on the aging population. Limited access to outpatient rehabilitation for these stroke survivors further deepens the healthcare issue and estranges the stroke patient demographic in rural areas. However, new advances in motion detection deep learning enable the use of handheld smartphone cameras for body tracking, offering unparalleled levels of accessibility.

METHODS

In this study we want to develop an automated method for evaluation of a shortened variant of the Fugl-Meyer assessment, the standard stroke rehabilitation scale describing upper extremity motor function. We pair this technology with a series of machine learning models, including different neural network structures and an eXtreme Gradient Boosting model, to score 16 of 33 (49%) Fugl-Meyer item activities.

RESULTS

In this observational study, 45 acute stroke patients completed at least 1 recorded Fugl-Meyer assessment for the training of the auto-scorers, which yielded average accuracies ranging from 78.1% to 82.7% item-wise.

CONCLUSION

In this study, an automated method was developed for the evaluation of a shortened variant of the Fugl-Meyer assessment, the standard stroke rehabilitation scale describing upper extremity motor function. This novel method is demonstrated with potential to conduct telehealth rehabilitation evaluations and assessments with accuracy and availability.

摘要

背景

中风和中风相关偏瘫的发病率一直在稳步上升,预计将成为老龄化人口的一个严重的社会、经济和身体负担。由于这些中风幸存者获得门诊康复治疗的机会有限,进一步加深了医疗保健问题,并使农村地区的中风患者群体疏远。然而,运动检测深度学习的新进展使得使用手持智能手机摄像头进行身体跟踪成为可能,提供了无与伦比的可及性。

方法

在这项研究中,我们希望开发一种自动评估简化版 Fugl-Meyer 评估的方法,该评估是描述上肢运动功能的标准中风康复量表。我们将这项技术与一系列机器学习模型(包括不同的神经网络结构和极端梯度提升模型)结合起来,对 33 项 Fugl-Meyer 项目活动中的 16 项进行评分。

结果

在这项观察性研究中,45 名急性中风患者至少完成了一次记录的 Fugl-Meyer 评估,以训练自动评分器,平均每项评估的准确率从 78.1%到 82.7%不等。

结论

在这项研究中,开发了一种用于评估简化版 Fugl-Meyer 评估的自动方法,该评估是描述上肢运动功能的标准中风康复量表。该新方法具有进行远程健康康复评估和评估的准确性和可用性的潜力。

相似文献

9
Clinical utility of the modified trunk impairment scale for stroke survivors.改良躯干损伤量表在脑卒中幸存者中的临床应用。
Disabil Rehabil. 2018 May;40(10):1200-1205. doi: 10.1080/09638288.2017.1282990. Epub 2017 Feb 7.

本文引用的文献

1
Secondary prevention among uninsured stroke patients: A free clinic study.未参保中风患者的二级预防:一项免费诊所研究。
SAGE Open Med. 2020 Oct 10;8:2050312120965325. doi: 10.1177/2050312120965325. eCollection 2020.
4
Automated Evaluation of Upper-Limb Motor Function Impairment Using Fugl-Meyer Assessment.使用 Fugl-Meyer 评估法自动评估上肢运动功能障碍。
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):125-134. doi: 10.1109/TNSRE.2017.2755667. Epub 2017 Sep 22.
10
Automated assessment of upper extremity movement impairment due to stroke.中风所致上肢运动功能障碍的自动化评估
PLoS One. 2014 Aug 6;9(8):e104487. doi: 10.1371/journal.pone.0104487. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验