Suppr超能文献

使用增强现实游戏对双侧伸手发育进行特征描述。

Characterization of bilateral reaching development using augmented reality games.

机构信息

Department of Computer Science and Engineering, University of Minnesota, Kenneth H. Keller Hall, 200 Union St SE, Minneapolis, MN 55455, United States of America.

College of Design, University of Minnesota, 107 Rapson Hall, 89 Church Street SE, Minneapolis, MN 55455, United States of America.

出版信息

Hum Mov Sci. 2024 Aug;96:103254. doi: 10.1016/j.humov.2024.103254. Epub 2024 Jul 30.

Abstract

Bilateral coordination is commonly impaired in neurodevelopmental conditions including cerebral palsy, developmental coordination disorder, and autism spectrum disorder. However, we lack objective clinical assessments that can quantify bilateral coordination in a clinically feasible manner and determine age-based norms to identify impairments. The objective of this study was to use augmented reality and computer vision to characterize bilateral reaching abilities in typically developing children. Typically developing children (n = 133) ages 6-17 years completed symmetric and asymmetric bilateral reaching tasks in an augmented reality game environment. We analyzed the number of target pairs they could reach in 50 s as well as the time lag between their hands reaching the targets. We found that performance on both tasks developed in parallel, with development slowing but not plateauing after age 12. Children performed better on the symmetric task than asymmetric, both in targets reached and with shorter hand lags. Variability between children in hand lag decreased with age. We also found gender differences with females outperforming males, which were most pronounced in the 10-11 year olds. Overall, this study demonstrates parallel development through childhood and adolescence of symmetric and asymmetric reaching abilities. Furthermore, it demonstrates the ability to quantify bilateral coordination using computer vision and augmented reality, which can be applied to assess clinical populations.

摘要

双侧协调在神经发育障碍中普遍受损,包括脑瘫、发育性协调障碍和自闭症谱系障碍。然而,我们缺乏能够以临床可行的方式量化双侧协调并确定基于年龄的正常范围以识别障碍的客观临床评估。本研究的目的是使用增强现实和计算机视觉来描述正常发育儿童的双侧伸手能力。年龄在 6-17 岁的正常发育儿童(n=133)在增强现实游戏环境中完成了对称和不对称的双侧伸手任务。我们分析了他们在 50 秒内可以达到的目标对的数量以及双手到达目标的时间差。我们发现,这两项任务的表现都呈平行发展,12 岁后发展速度减缓但并未停滞。儿童在对称任务中的表现优于不对称任务,无论是在达到的目标数量还是手的滞后时间上。儿童之间的手滞后时间差异随着年龄的增长而减小。我们还发现了性别差异,女性表现优于男性,在 10-11 岁的儿童中最为明显。总体而言,这项研究表明,对称和不对称伸手能力在儿童期和青春期呈平行发展。此外,它还展示了使用计算机视觉和增强现实来量化双侧协调的能力,这可以应用于评估临床人群。

相似文献

1
Characterization of bilateral reaching development using augmented reality games.
Hum Mov Sci. 2024 Aug;96:103254. doi: 10.1016/j.humov.2024.103254. Epub 2024 Jul 30.
7
Treadmill interventions with partial body weight support in children under six years of age at risk of neuromotor delay.
Cochrane Database Syst Rev. 2011 Dec 7(12):CD009242. doi: 10.1002/14651858.CD009242.pub2.
8
Personalisation of a virtual gaming system for children with motor impairments: performance and usability.
Disabil Rehabil Assist Technol. 2023 Aug;18(6):876-882. doi: 10.1080/17483107.2021.1936222. Epub 2021 Jul 16.
9
Exercise interventions for cerebral palsy.
Cochrane Database Syst Rev. 2017 Jun 11;6(6):CD011660. doi: 10.1002/14651858.CD011660.pub2.
10
Reading aids for adults with low vision.
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD003303. doi: 10.1002/14651858.CD003303.pub4.

本文引用的文献

2
Task-Related Differences in End-Point Kinematics in School-Age Children with Typical Development.
Behav Sci (Basel). 2023 Jun 23;13(7):528. doi: 10.3390/bs13070528.
3
4
An international survey mapping practice and barriers for upper-limb assessments in movement analysis.
Gait Posture. 2022 Jul;96:93-101. doi: 10.1016/j.gaitpost.2022.05.018. Epub 2022 May 20.
5
Applications of Pose Estimation in Human Health and Performance across the Lifespan.
Sensors (Basel). 2021 Nov 3;21(21):7315. doi: 10.3390/s21217315.
7
Tyneside Pegboard Test for unimanual and bimanual dexterity in unilateral cerebral palsy: association with sensorimotor impairment.
Dev Med Child Neurol. 2021 Jul;63(7):874-882. doi: 10.1111/dmcn.14858. Epub 2021 Mar 15.
8
Deep neural networks enable quantitative movement analysis using single-camera videos.
Nat Commun. 2020 Aug 13;11(1):4054. doi: 10.1038/s41467-020-17807-z.
10
The Development of Bimanual Coordination Across Toddlerhood.
Monogr Soc Res Child Dev. 2019 Jun;84(2):7-147. doi: 10.1111/mono.12405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验