Suppr超能文献

预测脑小血管病中的新发痴呆:机器学习与传统统计模型的比较

Predicting incident dementia in cerebral small vessel disease: comparison of machine learning and traditional statistical models.

作者信息

Li Rui, Harshfield Eric L, Bell Steven, Burkhart Michael, Tuladhar Anil M, Hilal Saima, Tozer Daniel J, Chappell Francesca M, Makin Stephen D J, Lo Jessica W, Wardlaw Joanna M, de Leeuw Frank-Erik, Chen Christopher, Kourtzi Zoe, Markus Hugh S

机构信息

Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland.

Heart and Lung Research Institute, University of Cambridge, United Kingdom of Great Britain and Northern Ireland.

出版信息

Cereb Circ Cogn Behav. 2023 Aug 9;5:100179. doi: 10.1016/j.cccb.2023.100179. eCollection 2023.

Abstract

BACKGROUND

Cerebral small vessel disease (SVD) contributes to 45% of dementia cases worldwide, yet we lack a reliable model for predicting dementia in SVD. Past attempts largely relied on traditional statistical approaches. Here, we investigated whether machine learning (ML) methods improved prediction of incident dementia in SVD from baseline SVD-related features over traditional statistical methods.

METHODS

We included three cohorts with varying SVD severity (RUN DMC,  = 503; SCANS,  = 121; HARMONISATION,  = 265). Baseline demographics, vascular risk factors, cognitive scores, and magnetic resonance imaging (MRI) features of SVD were used for prediction. We conducted both survival analysis and classification analysis predicting 3-year dementia risk. For each analysis, several ML methods were evaluated against standard Cox or logistic regression. Finally, we compared the feature importance ranked by different models.

RESULTS

We included 789 participants without missing data in the survival analysis, amongst whom 108 (13.7%) developed dementia during a median follow-up of 5.4 years. Excluding those censored before three years, we included 750 participants in the classification analysis, amongst whom 48 (6.4%) developed dementia by year 3. Comparing statistical and ML models, only regularised Cox/logistic regression outperformed their statistical counterparts overall, but not significantly so in survival analysis. Baseline cognition was highly predictive, and global cognition was the most important feature.

CONCLUSIONS

When using baseline SVD-related features to predict dementia in SVD, the ML survival or classification models we evaluated brought little improvement over traditional statistical approaches. The benefits of ML should be evaluated with caution, especially given limited sample size and features.

摘要

背景

脑小血管病(SVD)导致全球45%的痴呆病例,但我们缺乏一个可靠的模型来预测SVD患者的痴呆症。过去的尝试主要依赖于传统统计方法。在此,我们研究了机器学习(ML)方法是否比传统统计方法能更好地从基线SVD相关特征预测SVD患者发生痴呆症的情况。

方法

我们纳入了三个SVD严重程度不同的队列(RUN DMC,n = 503;SCANS,n = 121;HARMONISATION,n = 265)。使用SVD的基线人口统计学、血管危险因素、认知评分和磁共振成像(MRI)特征进行预测。我们进行了生存分析和分类分析,以预测3年痴呆风险。对于每项分析,针对标准Cox或逻辑回归评估了几种ML方法。最后,我们比较了不同模型排列的特征重要性。

结果

在生存分析中,我们纳入了789名无缺失数据的参与者,其中108名(13.7%)在中位随访5.4年期间发生了痴呆症。排除那些在三年前被审查的参与者后,我们在分类分析中纳入了750名参与者,其中48名(6.4%)在第3年时发生了痴呆症。比较统计模型和ML模型,总体上只有正则化Cox/逻辑回归的表现优于其对应的统计模型,但在生存分析中差异不显著。基线认知具有高度预测性,整体认知是最重要的特征。

结论

当使用基线SVD相关特征预测SVD患者的痴呆症时,我们评估的ML生存或分类模型相比传统统计方法没有带来显著改善。应谨慎评估ML的益处,特别是考虑到样本量和特征有限的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3d3/10428032/579702a95c00/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验