Suppr超能文献

切割还是不切割:用于精准基因组工程的新一代基因组编辑器

To Cut or not to Cut: Next-generation Genome Editors for Precision Genome Engineering.

作者信息

Zhang Meng, Zhu Zhixin, Xun Guanhua, Zhao Huimin

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

Curr Opin Biomed Eng. 2023 Dec;28. doi: 10.1016/j.cobme.2023.100489. Epub 2023 Jul 7.

Abstract

Since the original report of repurposing the CRISPR/Cas9 system for genome engineering, the past decade has witnessed profound improvement in our ability to efficiently manipulate the mammalian genome. However, significant challenges lie ahead that hinder the translation of CRISPR-based gene editing technologies into safe and effective therapeutics. The CRISPR systems often have a limited target scope due to PAM restrictions, and the off-target activity also poses serious risks for therapeutic applications. Moreover, the first-generation genome editors typically achieve desired genomic modifications by inducing double-strand breaks (DSBs) at target site(s). Despite being highly efficient, this "cut and fix" strategy is less favorable in clinical settings due to drawbacks associated with the nuclease-induced DSBs. In this review, we focus on recent advances that help address these challenges, including the engineering and discovery of novel CRISPR/Cas systems with improved functionalities and the development of DSB-free genome editors.

摘要

自从关于将CRISPR/Cas9系统重新用于基因组工程的最初报告以来,在过去十年中,我们高效操纵哺乳动物基因组的能力有了显著提高。然而,仍面临重大挑战,阻碍了基于CRISPR的基因编辑技术转化为安全有效的治疗方法。由于PAM限制,CRISPR系统的靶向范围通常有限,脱靶活性也给治疗应用带来严重风险。此外,第一代基因组编辑器通常通过在靶位点诱导双链断裂(DSB)来实现所需的基因组修饰。尽管效率很高,但这种“切割并修复”策略在临床环境中不太有利,因为存在与核酸酶诱导的DSB相关的缺点。在这篇综述中,我们重点关注有助于应对这些挑战的最新进展,包括具有改进功能的新型CRISPR/Cas系统的工程设计和发现,以及无DSB基因组编辑器的开发。

相似文献

6
7
Engineering Cas9: next generation of genomic editors.工程化 Cas9:新一代基因组编辑工具。
Appl Microbiol Biotechnol. 2024 Feb 14;108(1):209. doi: 10.1007/s00253-024-13056-y.
8
Precision genome editing in the CRISPR era.CRISPR时代的精准基因组编辑。
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.

引用本文的文献

1
Precision engineering of the probiotic Nissle 1917 with prime editing.利用碱基编辑对益生菌Nissle 1917进行精准工程改造。
Appl Environ Microbiol. 2025 Feb 19;91(2):e0003125. doi: 10.1128/aem.00031-25. Epub 2025 Jan 31.

本文引用的文献

2
Improved cytosine base editors generated from TadA variants.经 TadA 变体改造的改良胞嘧啶碱基编辑器。
Nat Biotechnol. 2023 May;41(5):686-697. doi: 10.1038/s41587-022-01611-9. Epub 2023 Jan 9.
5
Prime editing for precise and highly versatile genome manipulation.碱基编辑技术实现精准且多功能的基因组编辑。
Nat Rev Genet. 2023 Mar;24(3):161-177. doi: 10.1038/s41576-022-00541-1. Epub 2022 Nov 7.
10
Therapeutic in vivo delivery of gene editing agents.基因编辑试剂的治疗性体内递送。
Cell. 2022 Jul 21;185(15):2806-2827. doi: 10.1016/j.cell.2022.03.045. Epub 2022 Jul 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验