Suppr超能文献

高精度线粒体 DNA 编辑的高保真 DddA 衍生碱基编辑器。

Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.

机构信息

Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.

Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.

出版信息

Nat Biotechnol. 2023 Mar;41(3):378-386. doi: 10.1038/s41587-022-01486-w. Epub 2022 Oct 13.

Abstract

Bacterial toxin DddA-derived cytosine base editors (DdCBEs)-composed of split DddA (a cytosine deaminase specific to double-stranded DNA), custom-designed TALE (transcription activator-like effector) DNA-binding proteins, and a uracil glycosylase inhibitor-enable mitochondrial DNA (mtDNA) editing in human cells, which may pave the way for therapeutic correction of pathogenic mtDNA mutations in patients. The utility of DdCBEs has been limited by off-target activity, which is probably caused by spontaneous assembly of the split DddA deaminase enzyme, independent of DNA-binding interactions. We engineered high-fidelity DddA-derived cytosine base editors (HiFi-DdCBEs) with minimal off-target activity by substituting alanine for amino acid residues at the interface between the split DddA halves. The resulting domains cannot form a functional deaminase without binding of their linked TALE proteins at adjacent sites on DNA. Whole mitochondrial genome sequencing shows that, unlike conventional DdCBEs, which induce hundreds of unwanted off-target C-to-T conversions in human mtDNA, HiFi-DdCBEs are highly efficient and precise, avoiding collateral off-target mutations, and as such, they will probably be desirable for therapeutic applications.

摘要

细菌毒素 DddA 衍生的胞嘧啶碱基编辑器(DdCBE)由分裂的 DddA(一种特异性识别双链 DNA 的胞嘧啶脱氨酶)、定制的 TALE(转录激活样效应物)DNA 结合蛋白和尿嘧啶糖基化酶抑制剂组成,可在人类细胞中进行线粒体 DNA(mtDNA)编辑,这可能为患者致病性 mtDNA 突变的治疗性校正铺平道路。DdCBE 的实用性受到脱靶活性的限制,这可能是由分裂的 DddA 脱氨酶酶的自发组装引起的,而与 DNA 结合相互作用无关。我们通过用丙氨酸取代分裂的 DddA 两半之间界面上的氨基酸残基,设计了具有最小脱靶活性的高保真 DddA 衍生的胞嘧啶碱基编辑器(HiFi-DdCBE)。没有与其相连的 TALE 蛋白在 DNA 相邻位点结合,所得结构域不能形成功能性脱氨酶。全线粒体基因组测序表明,与传统的 DdCBE 不同,后者在人类 mtDNA 中诱导数百个不需要的脱靶 C 到 T 转换,HiFi-DdCBE 非常高效和精确,避免了 collateral 脱靶突变,因此,它们可能是治疗应用的理想选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2004/10017512/887c9699d7a4/41587_2022_1486_Fig1_HTML.jpg

相似文献

1
Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.
Nat Biotechnol. 2023 Mar;41(3):378-386. doi: 10.1038/s41587-022-01486-w. Epub 2022 Oct 13.
2
Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs.
Hum Gene Ther. 2024 Oct;35(19-20):798-813. doi: 10.1089/hum.2024.073. Epub 2024 Sep 24.
3
A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
Nature. 2020 Jul;583(7817):631-637. doi: 10.1038/s41586-020-2477-4. Epub 2020 Jul 8.
4
Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases.
Cell. 2022 May 12;185(10):1764-1776.e12. doi: 10.1016/j.cell.2022.03.039. Epub 2022 Apr 25.
5
Base editing in human cells with monomeric DddA-TALE fusion deaminases.
Nat Commun. 2022 Jul 12;13(1):4038. doi: 10.1038/s41467-022-31745-y.
6
Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants.
BMC Biol. 2024 Apr 29;22(1):99. doi: 10.1186/s12915-024-01895-0.
7
Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases.
Nat Commun. 2021 Feb 19;12(1):1190. doi: 10.1038/s41467-021-21464-1.
8
Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo.
Nat Commun. 2022 Nov 23;13(1):7204. doi: 10.1038/s41467-022-34784-7.
9
Mitochondrial base editor induces substantial nuclear off-target mutations.
Nature. 2022 Jun;606(7915):804-811. doi: 10.1038/s41586-022-04836-5. Epub 2022 May 12.
10
Advances in mitochondrial DNA base editing technology.
Yi Chuan. 2023 Aug 20;45(8):632-642. doi: 10.16288/j.yczz.23-045.

引用本文的文献

1
Alterations in mitochondrial base editors enhance targeted editing efficiency for mouse model generation.
Mol Ther Nucleic Acids. 2025 Aug 11;36(3):102678. doi: 10.1016/j.omtn.2025.102678. eCollection 2025 Sep 9.
3
Correction of pathogenic mitochondrial DNA in patient-derived disease models using mitochondrial base editors.
PLoS Biol. 2025 Jun 24;23(6):e3003207. doi: 10.1371/journal.pbio.3003207. eCollection 2025 Jun.
4
Charting the development and engineering of CRISPR base editors: lessons and inspirations.
Cell Chem Biol. 2025 Jun 19;32(6):789-808. doi: 10.1016/j.chembiol.2025.05.003. Epub 2025 Jun 5.
8
Mitochondrial DNA editing: Key to the treatment of neurodegenerative diseases.
Genes Dis. 2024 Sep 21;12(4):101437. doi: 10.1016/j.gendis.2024.101437. eCollection 2025 Jul.
9
Leveraging base excision repair for efficient adenine base editing of mitochondrial DNA.
Nat Biotechnol. 2025 Mar 25. doi: 10.1038/s41587-025-02608-w.
10
Mitochondrial genetics, signalling and stress responses.
Nat Cell Biol. 2025 Mar;27(3):393-407. doi: 10.1038/s41556-025-01625-w. Epub 2025 Mar 10.

本文引用的文献

1
Mitochondrial base editor induces substantial nuclear off-target mutations.
Nature. 2022 Jun;606(7915):804-811. doi: 10.1038/s41586-022-04836-5. Epub 2022 May 12.
2
CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
Nat Biotechnol. 2022 Sep;40(9):1378-1387. doi: 10.1038/s41587-022-01256-8. Epub 2022 Apr 4.
4
Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE.
Cell Discov. 2022 Feb 1;8(1):7. doi: 10.1038/s41421-021-00372-0.
5
DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome.
Mol Ther Nucleic Acids. 2021 Nov 19;27:73-80. doi: 10.1016/j.omtn.2021.11.016. eCollection 2022 Mar 8.
6
The FusX TALE Base Editor (FusXTBE) for Rapid Mitochondrial DNA Programming of Human Cells and Zebrafish Disease Models .
CRISPR J. 2021 Dec;4(6):799-821. doi: 10.1089/crispr.2021.0061. Epub 2021 Nov 30.
7
Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing.
Cell Discov. 2021 Oct 19;7(1):95. doi: 10.1038/s41421-021-00325-7.
8
Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing.
Cell Discov. 2021 Sep 3;7(1):78. doi: 10.1038/s41421-021-00307-9.
9
High-efficiency plastome base editing in rice with TAL cytosine deaminase.
Mol Plant. 2021 Sep 6;14(9):1412-1414. doi: 10.1016/j.molp.2021.07.007. Epub 2021 Jul 12.
10
Chloroplast and mitochondrial DNA editing in plants.
Nat Plants. 2021 Jul;7(7):899-905. doi: 10.1038/s41477-021-00943-9. Epub 2021 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验