ShanghaiTech University.
School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad301.
Omics data from clinical samples are the predominant source of target discovery and drug development. Typically, hundreds or thousands of differentially expressed genes or proteins can be identified from omics data. This scale of possibilities is overwhelming for target discovery and validation using biochemical or cellular experiments. Most of these proteins and genes have no corresponding drugs or even active compounds. Moreover, a proportion of them may have been previously reported as being relevant to the disease of interest. To facilitate translational drug discovery from omics data, we have developed a new classification tool named Omics and Text driven Translational Medicine (OTTM). This tool can markedly narrow the range of proteins or genes that merit further validation via drug availability assessment and literature mining. For the 4489 candidate proteins identified in our previous proteomics study, OTTM recommended 40 FDA-approved or clinical trial drugs. Of these, 15 are available commercially and were tested on hepatocellular carcinoma Hep-G2 cells. Two drugs-tafenoquine succinate (an FDA-approved antimalarial drug targeting CYC1) and branaplam (a Phase 3 clinical drug targeting SMN1 for the treatment of spinal muscular atrophy)-showed potent inhibitory activity against Hep-G2 cell viability, suggesting that CYC1 and SMN1 may be potential therapeutic target proteins for hepatocellular carcinoma. In summary, OTTM is an efficient classification tool that can accelerate the discovery of effective drugs and targets using thousands of candidate proteins identified from omics data. The online and local versions of OTTM are available at http://otter-simm.com/ottm.html.
从临床样本中获得的组学数据是发现靶标和开发药物的主要来源。通常,从组学数据中可以鉴定出数百个甚至数千个差异表达的基因或蛋白质。对于使用生化或细胞实验进行靶标发现和验证来说,这种可能性的规模是压倒性的。其中大多数蛋白质和基因没有相应的药物,甚至没有活性化合物。此外,其中一部分可能以前被报道与感兴趣的疾病有关。为了促进从组学数据中发现转化药物,我们开发了一种名为组学和文本驱动的转化医学(OTTM)的新分类工具。该工具可以通过药物可用性评估和文献挖掘,显著缩小需要进一步验证的蛋白质或基因的范围。在我们之前的蛋白质组学研究中,鉴定出了 4489 种候选蛋白质,OTTM 推荐了 40 种 FDA 批准或临床试验药物。其中,有 15 种是商业上可获得的,并在肝癌 Hep-G2 细胞上进行了测试。两种药物——琥珀酸他非诺喹(一种针对 CYC1 的 FDA 批准的抗疟药物)和 branaplam(一种针对 SMN1 的治疗脊髓性肌萎缩症的 III 期临床试验药物)——对 Hep-G2 细胞活力表现出强烈的抑制活性,这表明 CYC1 和 SMN1 可能是肝癌的潜在治疗靶标蛋白。总之,OTTM 是一种有效的分类工具,可以使用从组学数据中鉴定出的数千种候选蛋白质来加速有效药物和靶标的发现。OTTM 的在线和本地版本可在 http://otter-simm.com/ottm.html 上获得。