Lee Yoon Jung, Kim Youngmin, Gim Hyeongyu, Hong Kootak, Jang Ho Won
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
Adv Mater. 2024 Feb;36(5):e2305353. doi: 10.1002/adma.202305353. Epub 2023 Nov 30.
Metal-insulator transition (MIT) coupled with an ultrafast, significant, and reversible resistive change in Mott insulators has attracted tremendous interest for investigation into next-generation electronic and optoelectronic devices, as well as a fundamental understanding of condensed matter systems. Although the mechanism of MIT in Mott insulators is still controversial, great efforts have been made to understand and modulate MIT behavior for various electronic and optoelectronic applications. In this review, recent progress in the field of nanoelectronics utilizing MIT is highlighted. A brief introduction to the physics of MIT and its underlying mechanisms is begun. After discussing the MIT behaviors of various Mott insulators, recent advances in the design and fabrication of nanoelectronics devices based on MIT, including memories, gas sensors, photodetectors, logic circuits, and artificial neural networks are described. Finally, an outlook on the development and future applications of nanoelectronics utilizing MIT is provided. This review can serve as an overview and a comprehensive understanding of the design of MIT-based nanoelectronics for future electronic and optoelectronic devices.
金属-绝缘体转变(MIT)与莫特绝缘体中超快、显著且可逆的电阻变化相结合,在下一代电子和光电器件的研究以及对凝聚态物质系统的基本理解方面引起了极大的兴趣。尽管莫特绝缘体中MIT的机制仍存在争议,但人们已做出巨大努力来理解和调控MIT行为,以用于各种电子和光电器件应用。在这篇综述中,着重介绍了利用MIT的纳米电子学领域的最新进展。首先简要介绍了MIT的物理学及其潜在机制。在讨论了各种莫特绝缘体的MIT行为之后,描述了基于MIT的纳米电子器件在设计和制造方面的最新进展,包括存储器、气体传感器、光电探测器、逻辑电路和人工神经网络。最后,对利用MIT的纳米电子学的发展和未来应用进行了展望。这篇综述可作为对基于MIT的纳米电子学设计的概述,有助于对未来电子和光电器件有全面的理解。