Suppr超能文献

FEP 协议生成器:使用主动学习优化自由能微扰协议。

FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols Using Active Learning.

机构信息

Schrodinger, Inc., 9868 Scranton Road, Suite 3200, San Diego, California 92121, United States.

Schrodinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States.

出版信息

J Chem Inf Model. 2023 Sep 11;63(17):5592-5603. doi: 10.1021/acs.jcim.3c00681. Epub 2023 Aug 18.

Abstract

Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small-molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ∼1 kcal mol have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the (a) relatively large parameter space to be explored, (b) significant compute requirements, and (c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses an active-learning workflow to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active-learning workflow, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.

摘要

在过去的十年中,通过自由能微扰(FEP)计算快速准确地预测结合亲和力的方法取得了重大进展。这是由于小分子力场和采样算法的最新进展以及低成本并行计算的可用性的推动。已经实现了约 1 kcal/mol 的预测精度,足以推动现代药物发现项目中的效力优化。尽管这些 FEP 方法在多个目标类别中具有稳健性,但总会有一些目标系统在默认 FEP 设置下无法表现出预期的性能。传统上,这些系统需要进行劳动密集型的手动协议开发,以找到产生可预测 FEP 模型的参数设置。由于 (a) 需要探索的参数空间相对较大,(b) 计算要求很高,以及 (c) 对参数组合如何影响 FEP 性能的理解有限,手动 FEP 协议优化可能需要数周到数月才能完成,并且通常不涉及严格的训练-测试集拆分,从而导致潜在的过度拟合。这些手动 FEP 协议开发时间表与紧张的药物发现项目时间表不一致,基本上阻止了这些目标系统使用 FEP 计算。在这里,我们描述了一种称为 FEP 协议生成器(FEP-PB)的自动化工作流程,用于为默认设置表现不佳的系统快速生成准确的 FEP 协议。FEP-PB 使用主动学习工作流程来迭代搜索协议参数空间,以开发准确的 FEP 协议。为了验证这种方法,我们将其应用于不能生成预测模型的药物相关系统。我们证明,FEP-PB 可以在有限的人为干预下,快速为以前具有挑战性的 MCL1 系统生成准确的 FEP 协议。我们还在实际的药物发现环境中应用 FEP-PB 为 p97 系统生成准确的 FEP 协议。FEP-PB 能够生成比专家用户更准确的协议,快速验证 p97 可用于自由能计算。此外,通过主动学习工作流程,我们能够深入了解给定系统中哪些参数最重要。这些结果表明,FEP-PB 是一种强大的工具,可以帮助快速开发准确的 FEP 协议,并增加适用于该技术的目标数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验