Suppr超能文献

使用λ动力学进行自动化、准确且可扩展的相对蛋白质-配体结合自由能计算

Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.

作者信息

Raman E Prabhu, Paul Thomas J, Hayes Ryan L, Brooks Charles L

机构信息

BIOVIA, Dassault Systemes, 5005 Wateridge Vista Drive, San Diego, California 92121, United States.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

J Chem Theory Comput. 2020 Dec 8;16(12):7895-7914. doi: 10.1021/acs.jctc.0c00830. Epub 2020 Nov 17.

Abstract

Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small-molecule lead optimization. Relative free-energy perturbation (FEP) approaches are one of the most widely utilized for this goal but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to set up, execute, and analyze multisite lambda dynamics (MSLD) calculations run on GPUs with CHARMM implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse data set of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free-energy landscape of any MSLD system is developed, which enhances sampling and allows for efficient estimation of free-energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than 100 ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150 ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multisite systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore the chemical space around a lead compound and thus are of utility in lead optimization.

摘要

准确预测蛋白质-配体结合亲和力随化学修饰的变化,对于小分子先导化合物优化具有重要意义。相对自由能微扰(FEP)方法是实现这一目标最广泛使用的方法之一,但计算成本高昂,因此其应用仅限于少量化合物。同样严格基于统计力学原理的λ动力学提供了一种更高效的替代方法。在本文中,我们描述了一种工作流程的开发,该流程用于设置、执行和分析在GPU上运行的多位点λ动力学(MSLD)计算,该计算使用BIOVIA Discovery Studio和Pipeline Pilot中实现的CHARMM。该工作流程建立了一个框架,用于设置模拟系统,以对先导化合物的修饰进行探索性筛选,从而能够计算组合文库的相对结合亲和力。为了验证该工作流程,我们研究了一组包含七种蛋白质的同类配体的多样数据集,并提供了实验结合亲和力数据。我们开发了一种协议,可自动迭代调整偏置势,以平坦任何MSLD系统的自由能面,从而增强采样并有效估计自由能差。该协议首先在大量模拟不同取代基的配体子集上进行了验证,结果显示出准确可靠的性能。我们还测试了该工作流程的可扩展性,以筛选单个系统中建模的100多个配体,结果也得到了准确的预测。对于大小组合文库,在累积采样时间为150 ns或更短的情况下,该方法在大多数情况下的平均无符号误差低于1 kcal/mol。对于所研究的多位点系统,估计该方法比当代FEP应用效率高出一个数量级以上。因此,结果证明了所提出的MSLD工作流程在有效筛选组合文库和探索先导化合物周围化学空间方面的实用性,从而在先导化合物优化中具有实用价值。

相似文献

5
Relative Binding Free Energy Calculations Applied to Protein Homology Models.应用于蛋白质同源模型的相对结合自由能计算
J Chem Inf Model. 2016 Dec 27;56(12):2388-2400. doi: 10.1021/acs.jcim.6b00362. Epub 2016 Nov 18.
8
Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.准确建模药物发现中的支架跳跃转化。
J Chem Theory Comput. 2017 Jan 10;13(1):42-54. doi: 10.1021/acs.jctc.6b00991. Epub 2016 Dec 9.
10
Accurate Binding Free Energy Predictions in Fragment Optimization.在碎片优化中进行准确的结合自由能预测。
J Chem Inf Model. 2015 Nov 23;55(11):2411-20. doi: 10.1021/acs.jcim.5b00538. Epub 2015 Oct 21.

引用本文的文献

2
Core Flipping in Lead Optimization: Rank Ordering Using λ-Dynamics.先导物优化中的核心翻转:使用λ动力学进行排序
J Chem Inf Model. 2025 Jul 14;65(13):6835-6846. doi: 10.1021/acs.jcim.5c00320. Epub 2025 Jun 16.
8
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
9
How to Sample Dozens of Substitutions per Site with λ Dynamics.如何使用 λ 动力学对每个位点进行数十个替换进行抽样。
J Chem Theory Comput. 2024 Jul 23;20(14):6098-6110. doi: 10.1021/acs.jctc.4c00514. Epub 2024 Jul 8.

本文引用的文献

2
QSAR without borders.无边界定量构效关系。
Chem Soc Rev. 2020 Jun 7;49(11):3525-3564. doi: 10.1039/d0cs00098a. Epub 2020 May 1.
5
Using AMBER18 for Relative Free Energy Calculations.使用 AMBER18 进行相对自由能计算。
J Chem Inf Model. 2019 Jul 22;59(7):3128-3135. doi: 10.1021/acs.jcim.9b00105. Epub 2019 Jun 20.
7
Predicting Activity Cliffs with Free-Energy Perturbation.用自由能微扰预测活动悬崖。
J Chem Theory Comput. 2019 Mar 12;15(3):1884-1895. doi: 10.1021/acs.jctc.8b01290. Epub 2019 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验