Blair Sarah J, Nielander Adam C, Stone Kevin H, Kreider Melissa E, Niemann Valerie A, Benedek Peter, McShane Eric J, Gallo Alessandro, Jaramillo Thomas F
Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA.
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA.
J Synchrotron Radiat. 2023 Sep 1;30(Pt 5):917-922. doi: 10.1107/S1600577523006331. Epub 2023 Aug 18.
In situ techniques are essential to understanding the behavior of electrocatalysts under operating conditions. When employed, in situ synchrotron grazing-incidence X-ray diffraction (GI-XRD) can provide time-resolved structural information of materials formed at the electrode surface. In situ cells, however, often require epoxy resins to secure electrodes, do not enable electrolyte flow, or exhibit limited chemical compatibility, hindering the study of non-aqueous electrochemical systems. Here, a versatile electrochemical cell for air-free in situ synchrotron GI-XRD during non-aqueous Li-mediated electrochemical N reduction (Li-NR) has been designed. This cell not only fulfills the stringent material requirements necessary to study this system but is also readily extendable to other electrochemical systems. Under conditions relevant to non-aqueous Li-NR, the formation of Li metal, LiOH and LiO as well as a peak consistent with the α-phase of LiN was observed, thus demonstrating the functionality of this cell toward developing a mechanistic understanding of complicated electrochemical systems.
原位技术对于理解电催化剂在工作条件下的行为至关重要。当使用原位同步辐射掠入射X射线衍射(GI-XRD)时,它可以提供电极表面形成材料的时间分辨结构信息。然而,原位电池通常需要环氧树脂来固定电极,不能实现电解液流动,或者化学兼容性有限,这阻碍了非水电化学系统的研究。在此,设计了一种用于非水锂介导电化学氮还原(Li-NR)过程中无空气原位同步辐射GI-XRD的通用电化学电池。该电池不仅满足研究该系统所需的严格材料要求,而且易于扩展到其他电化学系统。在与非水Li-NR相关的条件下,观察到锂金属、LiOH和LiO的形成以及与LiN的α相一致的峰,从而证明了该电池对于深入理解复杂电化学系统机理的功能性。