Zeng Yexiong, Zhou Zheng-Yang, Rinaldi Enrico, Gneiting Clemens, Nori Franco
Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan.
Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan.
Phys Rev Lett. 2023 Aug 4;131(5):050601. doi: 10.1103/PhysRevLett.131.050601.
Autonomous quantum error correction (AQEC) protects logical qubits by engineered dissipation and thus circumvents the necessity of frequent, error-prone measurement-feedback loops. Bosonic code spaces, where single-photon loss represents the dominant source of error, are promising candidates for AQEC due to their flexibility and controllability. While existing proposals have demonstrated the in-principle feasibility of AQEC with bosonic code spaces, these schemes are typically based on the exact implementation of the Knill-Laflamme conditions and thus require the realization of Hamiltonian distances d≥2. Implementing such Hamiltonian distances requires multiple nonlinear interactions and control fields, rendering these schemes experimentally challenging. Here, we propose a bosonic code for approximate AQEC by relaxing the Knill-Laflamme conditions. Using reinforcement learning (RL), we identify the optimal bosonic set of code words (denoted here by RL code), which, surprisingly, is composed of the Fock states |2⟩ and |4⟩. As we show, the RL code, despite its approximate nature, successfully suppresses single-photon loss, reducing it to an effective dephasing process that well surpasses the break-even threshold. It may thus provide a valuable building block toward full error protection. The error-correcting Hamiltonian, which includes ancilla systems that emulate the engineered dissipation, is entirely based on the Hamiltonian distance d=1, significantly reducing model complexity. Single-qubit gates are implemented in the RL code with a maximum distance d_{g}=2.
自主量子纠错(AQEC)通过工程耗散来保护逻辑量子比特,从而避免了频繁且容易出错的测量反馈回路的必要性。在玻色子码空间中,单光子损失是主要的误差来源,由于其灵活性和可控性,它是AQEC很有前景的候选方案。虽然现有方案已经证明了在玻色子码空间中AQEC在原理上的可行性,但这些方案通常基于基尔 - 拉弗拉梅条件的精确实现,因此需要实现哈密顿距离d≥2。实现这样的哈密顿距离需要多个非线性相互作用和控制场,这使得这些方案在实验上具有挑战性。在这里,我们通过放宽基尔 - 拉弗拉梅条件,提出了一种用于近似AQEC的玻色子码。使用强化学习(RL),我们确定了最优的玻色子码字集(在此表示为RL码),令人惊讶的是,它由福克态|2⟩和|4⟩组成。正如我们所展示的,RL码尽管具有近似性质,但成功地抑制了单光子损失,将其降低为一个有效的退相过程,该过程远远超过了盈亏平衡点阈值。因此,它可能为实现完全的错误保护提供一个有价值的构建块。纠错哈密顿量包括模拟工程耗散的辅助系统,它完全基于哈密顿距离d = 1,显著降低了模型复杂性。单比特门在RL码中以最大距离dg = 2实现。