Suppr超能文献

国际肺癌研究协会早期肺癌影像学联合会开源深度学习和定量测量倡议。

The International Association for the Study of Lung Cancer Early Lung Imaging Confederation Open-Source Deep Learning and Quantitative Measurement Initiative.

机构信息

Department of Integrative Oncology, The British Columbia Cancer Research Institute and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.

International Association for the Study of Lung Cancer, Denver, Colorado.

出版信息

J Thorac Oncol. 2024 Jan;19(1):94-105. doi: 10.1016/j.jtho.2023.08.016. Epub 2023 Aug 16.

Abstract

INTRODUCTION

With global adoption of computed tomography (CT) lung cancer screening, there is increasing interest to use artificial intelligence (AI) deep learning methods to improve the clinical management process. To enable AI research using an open-source, cloud-based, globally distributed, screening CT imaging data set and computational environment that are compliant with the most stringent international privacy regulations that also protect the intellectual properties of researchers, the International Association for the Study of Lung Cancer sponsored development of the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to describe the updated capabilities of ELIC and illustrate how this resource can be used for clinically relevant AI research.

METHODS

In this second phase of the initiative, metadata and screening CT scans from two time points were collected from 100 screening participants in seven countries. An automated deep learning AI lung segmentation algorithm, automated quantitative emphysema metrics, and a quantitative lung nodule volume measurement algorithm were run on these scans.

RESULTS

A total of 1394 CTs were collected from 697 participants. The LAV950 quantitative emphysema metric was found to be potentially useful in distinguishing lung cancer from benign cases using a combined slice thickness more than or equal to 2.5 mm. Lung nodule volume change measurements had better sensitivity and specificity for classifying malignant from benign lung nodules when applied to solid lung nodules from high-quality CT scans.

CONCLUSIONS

These initial experiments revealed that ELIC can support deep learning AI and quantitative imaging analyses on diverse and globally distributed cloud-based data sets.

摘要

简介

随着全球采用计算机断层扫描(CT)肺癌筛查,人们越来越有兴趣使用人工智能(AI)深度学习方法来改善临床管理流程。为了使用符合最严格的国际隐私法规的开源、基于云的、全球分布的筛查 CT 成像数据集和计算环境来支持 AI 研究,这些法规还保护研究人员的知识产权,国际肺癌研究协会于 2018 年发起了早期肺癌成像联合会(ELIC)资源的开发。本报告的目的是描述 ELIC 的最新功能,并说明如何将该资源用于与临床相关的 AI 研究。

方法

在该倡议的第二阶段,从七个国家的 100 名筛查参与者中收集了元数据和筛查 CT 扫描的两个时间点的数据。在这些扫描上运行了自动化深度学习 AI 肺分割算法、自动化定量肺气肿指标和定量肺结节体积测量算法。

结果

从 697 名参与者中总共收集了 1394 个 CT。发现 LAV950 定量肺气肿指标在使用厚度大于或等于 2.5 毫米的组合切片时,对于区分肺癌与良性病例可能有用。当应用于高质量 CT 扫描的实性肺结节时,肺结节体积变化测量对恶性与良性肺结节的分类具有更好的敏感性和特异性。

结论

这些初步实验表明,ELIC 可以支持基于云的多样化和全球分布数据集上的深度学习 AI 和定量成像分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验