Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Australia, Cnr College Rd & Cooper Rd, St Lucia, QLD, 4072, Australia.
Nat Commun. 2023 Aug 18;14(1):5035. doi: 10.1038/s41467-023-40610-5.
ABCG2 is a medically important ATP-binding cassette transporter with crucial roles in the absorption and distribution of chemically-diverse toxins and drugs, reducing the cellular accumulation of chemotherapeutic drugs to facilitate multidrug resistance in cancer. ABCG2's capacity to transport both hydrophilic and hydrophobic compounds is not well understood. Here we assess the molecular basis for substrate discrimination by the binding pocket. Substitution of a phylogenetically-conserved polar residue, N436, to alanine in the binding pocket of human ABCG2 permits only hydrophobic substrate transport, revealing the unique role of N436 as a discriminator. Molecular dynamics simulations show that this alanine substitution alters the electrostatic potential of the binding pocket favoring hydration of the transport pore. This change affects the contact with substrates and inhibitors, abrogating hydrophilic compound transport while retaining the transport of hydrophobic compounds. The N436 residue is also required for optimal transport inhibition of ABCG2, as many inhibitors are functionally impaired by this ABCG2 mutation. Overall, these findings have biomedical implications, broadly extending our understanding of substrate and inhibitor interactions.
ABCG2 是一种具有重要医学意义的 ATP 结合盒转运蛋白,在化学多样性毒素和药物的吸收和分布中起着关键作用,减少了细胞内化疗药物的积累,从而促进了癌症的多药耐药性。ABCG2 能够转运亲水性和疏水性化合物,但这一能力的分子基础尚不清楚。在这里,我们评估了结合口袋对底物的区分能力的分子基础。在人 ABCG2 的结合口袋中取代一个系统发育保守的极性残基 N436 为丙氨酸,只允许疏水性底物转运,这揭示了 N436 作为一个区分因子的独特作用。分子动力学模拟表明,这种丙氨酸取代改变了结合口袋的静电势,有利于转运孔的水合作用。这种变化影响与底物和抑制剂的接触,从而阻断亲水性化合物的转运,同时保留疏水性化合物的转运。N436 残基也是 ABCG2 最佳转运抑制所必需的,因为许多抑制剂的功能因这种 ABCG2 突变而受损。总的来说,这些发现具有广泛的生物医学意义,大大扩展了我们对底物和抑制剂相互作用的理解。