Suppr超能文献

机器人悬滴法:用于微秒级分辨、人工智能可执行的X射线光子相关光谱学的无容器液体。

Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS.

作者信息

Ozgulbas Doga Yamac, Jensen Don, Butler Rory, Vescovi Rafael, Foster Ian T, Irvin Michael, Nakaye Yasukazu, Chu Miaoqi, Dufresne Eric M, Seifert Soenke, Babnigg Gyorgy, Ramanathan Arvind, Zhang Qingteng

机构信息

Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

出版信息

Light Sci Appl. 2023 Aug 18;12(1):196. doi: 10.1038/s41377-023-01233-z.

Abstract

The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10-10 s /10-10 m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery.

摘要

复杂流体中混合相的动力学和结构会显著影响其材料特性,如粘弹性。小角X射线光子相关光谱法(SA-XPCS)能够在宽广的时空范围(10⁻¹⁰秒/10⁻¹⁰米)内,探测各种原位环境下混合相的自发空间涨落。然而,定制材料设计需要在大量的样品成分和实验参数中进行搜索,这超出了当前相干X射线束线的带宽。利用与先进光子源的时钟频率同步的3.7微秒分辨XPCS,我们证明了从封闭悬滴和密封毛细管中测得的直径约100纳米的胶体二氧化硅纳米颗粒的布朗动力学之间的一致性。电子移液器还可以安装在机器人手臂上,以获取不同的储备溶液,并创建具有高度可重复和精确控制成分分布的复杂流体。这种闭环、可由人工智能执行的方案适用于光散射技术,而与光波长和光学相干性无关,是迈向高通量、自主材料发现的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/984b/10439219/afd550298297/41377_2023_1233_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验