Suppr超能文献

基于激光二极管的太赫兹时域光谱系统,在100吉赫兹时峰值信噪比为133分贝。

Laser diode based THz-TDS system with 133 dB peak signal-to-noise ratio at 100 GHz.

作者信息

Cherniak Vladyslav, Kubiczek Tobias, Kolpatzeck Kevin, Balzer Jan C

机构信息

NTS, University of Duisburg Essen, 47057, Duisburg, Germany.

出版信息

Sci Rep. 2023 Aug 18;13(1):13476. doi: 10.1038/s41598-023-40634-3.

Abstract

Terahertz time-domain spectroscopy (THz-TDS) has emerged as a powerful and versatile tool in various scientific fields. These include-among others-imaging, material characterization, and layer thickness measurements. While THz-TDS has achieved significant success in research environments, the high cost and bulky nature of most systems have hindered widespread commercialization of this technology. Two primary factors contributing to the size and cost of these systems are the laser and the optical delay unit (ODU). Consequently, our group has focused on developing THz-TDS systems based on compact monolithic mode-locked laser diodes (MLLDs). The ultra-high repetition rate (UHRR) of the MLLD has the added benefit that it allows us to utilize shorter ODUs, thereby reducing the overall cost and size of our systems. However, achieving the necessary precision in the ODU to acquire accurate terahertz time-domain signals remains a crucial aspect. To address this issue, we have developed and enhanced an interferometric extension for UHRR-THz-TDS systems. This extension is inexpensive, compact, and easy to incorporate. In this article, we present the system setup, the extension itself, and the algorithmic procedure for reconstructing the delay axis based on the interferometric reference signal. We evaluate a dataset comprising 10,000 signal traces and report a standard deviation of the measured terahertz phase at 1.6 THz as low as 3 mrad. Additionally, we demonstrate a remaining peak-to-peak jitter of only 20 fs and a record-high peak signal-to-noise ratio of 133 dB at 100 GHz after averaging. The method presented in this paper allows for simplified THz-TDS system builds, reducing bulk and cost. As a result, it further facilitates the transition of terahertz technologies from laboratory to field applications.

摘要

太赫兹时域光谱技术(THz-TDS)已成为各个科学领域中一种强大且通用的工具。这些领域包括——但不限于——成像、材料表征和层厚测量。虽然THz-TDS在研究环境中已取得显著成功,但大多数系统的高成本和庞大体积阻碍了该技术的广泛商业化。导致这些系统尺寸和成本的两个主要因素是激光器和光学延迟单元(ODU)。因此,我们团队专注于开发基于紧凑型单片锁模激光二极管(MLLD)的THz-TDS系统。MLLD的超高重复率(UHRR)还有一个额外的好处,即它使我们能够使用更短的ODU,从而降低系统的总体成本和尺寸。然而,在ODU中实现获取准确太赫兹时域信号所需的精度仍然是一个关键问题。为了解决这个问题,我们为UHRR-THz-TDS系统开发并改进了一种干涉扩展装置。该扩展装置价格低廉、体积紧凑且易于集成。在本文中,我们介绍了系统设置、扩展装置本身以及基于干涉参考信号重建延迟轴的算法过程。我们评估了一个包含10000个信号轨迹的数据集,并报告在1.6太赫兹下测得的太赫兹相位的标准偏差低至3毫弧度。此外,我们展示了平均后在100吉赫兹处仅20飞秒的剩余峰峰值抖动和创纪录的133分贝的高峰值信噪比。本文提出的方法允许简化THz-TDS系统的构建,减少体积和成本。因此,它进一步促进了太赫兹技术从实验室到现场应用的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b80/10439182/38dc9687afd2/41598_2023_40634_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验