Lampert Yazan, Shams-Ansari Amirhassan, Gaier Aleksei, Tomasino Alessandro, Cao Xuhui, Magalhaes Leticia, Rajabali Shima, Lončar Marko, Benea-Chelmus Ileana-Cristina
Hybrid Photonics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Center for Quantum Science and Engineering (EPFL), Lausanne, Switzerland.
Nat Commun. 2025 Jul 30;16(1):7004. doi: 10.1038/s41467-025-62267-y.
Modern communication and sensing technologies connect the optical domain with the microwave domain. Accessing the terahertz region from 100 GHz to 10 THz is critical for providing larger bandwidths capabilities. Despite progress in integrated electronics, they lack a direct link to the optical domain, and face challenges with increasing frequencies ( > 1 THz). Electro-optic effects offer promising capabilities but are currently limited to bulk nonlinear crystals, missing out miniaturization, or to sub-terahertz bandwidths. Here, we address these challenges by realizing photonic circuits that integrate terahertz transmission lines on thin-film lithium niobate (TFLN). By providing terahertz field confinement and phase-matched interaction with optical fields, our miniaturized devices support low-noise and broad bandwidth terahertz generation and detection spanning four octaves (200 GHz to > 3 THz). By leveraging photonics' advantages in low-loss and high-speed control, our platform achieves control over the terahertz spectrum and its amplitude, paving the way for compact and power-efficient devices with applications in telecommunications, spectroscopy, quantum electrodynamics and computing.
现代通信和传感技术将光学领域与微波领域连接起来。进入100吉赫兹至10太赫兹的太赫兹区域对于提供更大的带宽能力至关重要。尽管集成电子学取得了进展,但它们缺乏与光学领域的直接联系,并且在频率增加(>1太赫兹)时面临挑战。电光效应提供了有前景的能力,但目前仅限于块状非线性晶体,无法实现小型化,或者仅限于亚太赫兹带宽。在这里,我们通过在薄膜铌酸锂(TFLN)上实现集成太赫兹传输线的光子电路来应对这些挑战。通过提供太赫兹场限制以及与光场的相位匹配相互作用,我们的小型化器件支持低噪声和跨越四个倍频程(200吉赫兹至>3太赫兹)的宽带太赫兹产生和检测。通过利用光子学在低损耗和高速控制方面的优势,我们的平台实现了对太赫兹频谱及其幅度的控制,为在电信、光谱学、量子电动力学和计算等领域应用的紧凑且节能的器件铺平了道路。