Prokscha Andreas, Sheikh Fawad, Jalali Mandana, De Boose Pieterjan, De Borre Eline, Jeladze Vera, Ribas Felipe Oliveira, Carvajal David Toribio, Svejda Jan Taro, Kubiczek Tobias, Aqlan Basem, Alibeigloo Pooya, Mutlu Enes, Watermann Jonas, Abts Jonathan, Kress Robin, Preuss Christian, Clochiatti Simone, Wiedau Livia, Weimann Nils G, Balzer Jan C, Thielens Arno, Kaiser Thomas, Erni Daniel
Institute of Digital Signal Processing (DSV), University of Duisburg-Essen (UDE), Duisburg, 47057, Germany.
General and Theoretical Electrical Engineering (ATE), University of Duisburg-Essen (UDE), and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, 47048, Germany.
Sci Rep. 2025 Mar 27;15(1):10638. doi: 10.1038/s41598-025-91630-8.
Terahertz (THz) technology provides precise monitoring capabilities in dynamic environments, offering unique insights into insect habitats. Our study focuses on environmental monitoring of European honey bees (Apis mellifera) through a combination of measurements and simulations. Initially, the dielectric material properties of honey bee body parts are characterized across the spectral range of 1-500 GHz to collect heterogeneous empirical data. To extend the study, honey bee mockups made from polyamide 12 (PA12) and epoxy resin are employed and validated as effective substitutes for real bees through comparative scattering analyses. The research further explores radar cross-section (RCS), imaging, and spectral properties using advanced THz technologies, including resonant tunneling diodes (RTDs) operating at 250 GHz and THz time-domain spectroscopy (THz-TDS) for frequencies exceeding 250 GHz. High-resolution imaging, utilizing a 450 GHz bandwidth, captures intricate anatomical features of both real and 3D-printed bees, showcasing the potential of THz technology for detailed environmental monitoring. Finally, simulations at 300 GHz assess the dosimetry and feasibility of non-invasive, continuous monitoring approaches based on the heterogeneous honey bee model.
太赫兹(THz)技术在动态环境中提供精确的监测能力,为昆虫栖息地提供独特的见解。我们的研究通过测量和模拟相结合的方式,专注于对欧洲蜜蜂(Apis mellifera)的环境监测。首先,在1-500 GHz的光谱范围内对蜜蜂身体部位的介电材料特性进行表征,以收集异质的经验数据。为了扩展研究,采用了由聚酰胺12(PA12)和环氧树脂制成的蜜蜂模型,并通过比较散射分析验证其作为真实蜜蜂的有效替代品。该研究进一步使用先进的太赫兹技术探索雷达截面(RCS)、成像和光谱特性,包括工作在250 GHz的共振隧穿二极管(RTD)和频率超过250 GHz的太赫兹时域光谱(THz-TDS)。利用450 GHz带宽的高分辨率成像捕捉真实蜜蜂和3D打印蜜蜂的复杂解剖特征,展示了太赫兹技术在详细环境监测方面的潜力。最后,在300 GHz进行的模拟评估了基于异质蜜蜂模型的非侵入性、连续监测方法的剂量学和可行性。