Suppr超能文献

基于多预测因子分解的哥伦比亚毒品种植森林化空间回归分析

A spatial regression analysis of Colombia's narcodeforestation with factor decomposition of multiple predictors.

作者信息

Rivadeneyra Perla, Scaccia Luisa, Salvati Luca

机构信息

Dipartimento di Economia e Diritto, Universitá di Macerata, Macerata, Italy.

Dipartimento di Metodi e Modelli per l'Economia, il Territorio e la Finanza, Universitá di Roma Sapienza, Rome, Italy.

出版信息

Sci Rep. 2023 Aug 18;13(1):13485. doi: 10.1038/s41598-023-40119-3.

Abstract

In the current accelerated process of global warming, forest conservation is becoming more difficult to address in developing countries, where woodlands are often fueling the illegal economy. In Colombia, the issue of narcodeforestation is of great concern, because of the ramification of narcoactivities that are affecting forests, such as agribusinesses and cattle ranching for money laundering. In this study, we use spatially explicit regressions incorporating a factor decomposition of predictors through principal component analysis to understand the impact of coca plantations on global and local-scale deforestation in Colombia. At national level we find a positive and statistically significant relationship between coca crops and deforestation. At the regional level, in two out of four regions, it appears that coca is causing deforestation, especially in the Department of Northern Santander and on the Pacific coast. The spatial models used reveal not only a direct effect but also positive and significant spillover effects, in line with the conjecture that narcodeforestation is not only due to the quest for new areas to expand coca-cultivation, which would determine a loss of forest only in the municipality where coca cultivation increases, but also to the need to launder illegal profits, or create clandestine routes and airplane strips, which can affect forests also in nearby municipalities.

摘要

在当前全球变暖加速的进程中,森林保护在发展中国家变得愈发难以解决,在这些国家,林地常常为非法经济提供助力。在哥伦比亚,毒品种植导致森林砍伐的问题备受关注,因为毒品活动的衍生影响着森林,比如用于洗钱的农业综合企业和养牛场。在本研究中,我们运用空间明确的回归分析,并通过主成分分析对预测变量进行因子分解,以了解古柯种植园对哥伦比亚全球和地方尺度森林砍伐的影响。在国家层面,我们发现古柯作物与森林砍伐之间存在正向且具有统计学意义的关系。在区域层面,在四个区域中的两个区域,似乎古柯正在导致森林砍伐,尤其是在北桑坦德省和太平洋沿岸地区。所使用的空间模型不仅揭示了直接影响,还揭示了正向且显著的溢出效应,这与以下推测相符:毒品种植导致森林砍伐不仅是因为寻求新的区域来扩大古柯种植,这只会导致古柯种植增加的市镇森林流失,还因为需要清洗非法利润,或创建秘密路线和飞机跑道,这也会影响附近市镇的森林。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acee/10439211/d1e714cacc6e/41598_2023_40119_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验